

Arterial Blood Gases

- An ABG is a blood test that measures the levels of many different gases in the blood
- Some people find this method of drawing blood to be more painful than the more standard method
- Because the test requires oxygen-rich blood, the blood sample must be taken from an artery
 - radial, brachial, femoral
 - Caution should be taken with patient on anticoagulants
- Used to
 - Assess oxygenation status
 - Acid-base balance
 - Response to ventilatory assistance and oxygen therapy

Information obtained

-pH $[H^+]$

pCO₂Partial pressure CO₂

– pO₂Partial pressure O₂

– HCO₃-Bicarbonate

Base excess (or deficit)

Excess usually indicates metabolic alkalosis

Deficit usually indicates metabolic acidosis

SaO₂
 Oxygen Saturation (from monitor)

Anion Gap Calculated value

- Base excess is a surplus amount of base (alkali) within the blood
- Normal range: -2 to +2 mEq/L
 - Positive BE (greater than +2) this indicates there has been a gain of a base (or a loss of an acid) due to non-respiratory causes.
 - Negative BE (less than -2) indicates a loss of base (or a gain of acid) due to a non-respiratory cause.

- Other obtainable information from the ABG in conjunction with normal blood work
- Difference between Na⁺ and Cl⁻ and HCO₃⁻ in the extracellular fluid
 - $[Na^+]$ + $[other cations] = <math>[Cl^-]$ + $[HCO_3^-]$ +[other anions]
 - [other anions]-[other cations]=[Na⁺]-([Cl⁻]+[HCO₃⁻])
 - Anion Gap = $Na^+-(Cl^- + HCO_3^-)$
- Useful particularly in the differential diagnosis of acid/base disorders

- Mnemonic MUDPILES identifies most common causes (metabolic acidosis)
 - M: Methanol
 - U: Uremia
 - D: Diabetic ketoacidosis (DKA)
 - P: Paraldehyde
 - I: Infection
 - L: Lactic acidosis
 - E: Ethylene glycol
 - S: Salicylates

CNS depressant

- Also known as methyl alcohol
- 90 to 95 percent of methanol in blood metabolized
- Metabolized by hepatic enzymes
- Alcohol dehydrogenase
- Forms formaldehyde and formic acid
- Formic acid primary toxin

Organic solvent found in:

- Cleaning materials
- Paints
- Varnishes
- Sterno fuel
- Formaldehyde
- Antifreeze
- Gasohol
- "Moonshine" alcohol
- Windshield wiper fluid

- Toxicity commonly result of:
 - Accidental or intentional ingestion
 - Skin exposure
 - Inhalation exposure
 - Industrial setting
 - "Huffing"

- Signs and symptoms
 - CNS disturbances
 - Depression, headache, vertigo
 - Cardiovascular collapse
 - Visual disturbances
 - Abdominal pain, N/V

- Diagnostic evaluation
 - Blood glucose
 - May be low
 - BUN/creatinine
 - May be elevated
 - Late finding
 - Anion gap
 - Elevated

- Diagnostic evaluation
 - Arterial blood gas
 - Marked metabolic acidosis
 - Decreased pH
 - decreased HCO₃⁻
 - Complete blood count
 - May show anemia

Diagnostic evaluation

- Urinalysis
 - Formaldehyde odor
 - Methanol concentrations of blood alcohol content (BAC)
 - 0-20 mg/dL
 - Usually asymptomatic
 - 20–150 mg/dL
 - Toxic level, treatment required
 - 150+ mg/dL
 - Potentially fatal if untreated

- Hemodialysis definitive treatment
- Supportive care
- IV or oral ethanol administration
 - Administer to BAC of 100mg/dL
- Typical infusion
 - 7.6–10 mL/kg over 30 min
 - 1.4 mL/kg/hr maintenance infusion

- NG tube insertion
 - Gastric lavage if ingestion <1 hour old
- Sodium bicarbonate
 - If:
 - pH levels <7.25</p>
 - Serum bicarbonate <15 mEq/L</p>
 - 50 mEq of 8.4 percent sodium bicarbonate every 30–60 minutes as needed
 - Fomepizole (Antizol)

- Syndrome of metabolic and clinical abnormalities associated with hormonal, electrolyte, and fluid imbalances
 - Develop with renal failure
 - Associated with CRF and ARF
- Literal translation means "urine in the blood"

- Common clinical derangements
 - Anemia
 - Acidosis
 - Hyperkalemia
 - Malnutrition
 - Hypertension
- Signs and symptoms
 - -N/V
 - Weight loss
 - Muscle cramps
 - Change in mental status

- Diagnostic evaluation
 - BUN
 - Elevated
 - Serum creatinine
 - Elevated
 - Creatinine clearance
 - Decreased if renal failure (RF) present

Diagnostic evaluation

- Arterial blood gas
 - Metabolic acidosis
 - Decreased pH
 - Decreased HCO₃⁻
- Urinalysis
 - Positive for protein, ketones, hemoglobin, glucose, and myoglobin
- Other data
 - Increases in potassium, phosphorus, and parathyroid hormone
 - Decreases in calcium, magnesium, serum bicarbonate, and hemoglobin

- Management of hyperkalemia
- Correction of acidosis

- Potentially life-threatening condition of diabetes
 - Characterized by hyperglycemia, acidosis, and ketonuria in the insulin-dependent diabetic
 - A relative or an absolute insulin deficiency decreases glucose movement across cell membranes
 - Causes intracellular hypoglycemia
 - Release of counter-regulatory hormones increases serum glucose levels and forms ketone bodies
 - Acidosis results from depletion of extracellular bicarbonate
 - Polyuria, polyphagia, polydypsia

- Diagnostic evaluation
 - Serum glucose
 - Often >300 mg/dL
 - Arterial blood gas
 - Metabolic acidosis
 - Decreased pH
 - Decreased HCO3—
 - Decreased PaCO2

- Diagnostic evaluation
 - BUN
 - Elevated
 - Creatinine
 - Elevated
 - Urinalysis
 - Ketonuria
 - Hyperkalemia

- Fluid volume replacement
- Insulin
- Hypokalemia, if it develops
- Supportive care as needed

- Sedative/hypnotic
 - Used to treat:
 - Acute delirium tremors associated with alcohol withdrawal
 - Seizures
 - When metabolized, paraldehyde turns into acetic acid and acetaldehyde
 - Effects similar to ethyl alcohol
 - Doses of 120 ml can cause:
 - CNS depression
 - Coma
 - Death

- Diagnostic evaluation
 - Potassium
 - Elevated
 - Arterial blood gas
 - Metabolic acidosis
 - Decreased pH
 - Decreased HCO₃⁻
 - Urinalysis
 - Deceased pH
 - Elevated acetic acid

- Treatment
 - Supportive care
 - Vasopressors if hypotension presents

- Systemic inflammatory response syndrome (SIRS)
 - Precursor to sepsis and end-organ failure
 - Ischemia at infection site leads to anaerobic metabolism
 - Buildup of lactic acid
 - Endotoxin release promotes vasodilation
 - Hypotension
 - Further ischemia
 - Extravasation of vascular volume

- Diagnostic evaluation
 - White blood cells
 - Elevated
 - Decreased if sepsis has developed
 - Arterial blood gas
 - Metabolic acidosis
 - Decreased pH
 - Decreased HCO₃⁻

- Diagnostic evaluation
 - BUN
 - Elevated
 - Creatinine
 - Elevated
 - Serum lactate
 - Elevated

- Supportive care
- Vasopressors
- Fluid volume replacement
- Broad-spectrum antibiotics

- Elevations in lactic acid occur as a result of abnormal conversion of pyruvate (pyruvic acid) to lactate
 - Lactemia develops when the bicarbonate buffer system is overwhelmed
 - Lactic acidosis said to be present when:
 - Lactic acid exceeds 5 mmol/L
 - pH levels drop below 7.25

- Two types of lactic acidosis
 - -A
 - Associated with clinical evidence of poor tissue perfusion or oxygenation
 - B
 - B1: Associated with underlying disease
 - B2: Associated with drug and toxins
 - B3: Associated with inborn errors in metabolism

Freeman, Scott, Biological Science, 2nd,©2005. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey

- Diagnostic evaluation
 - Potassium
 - Elevated
 - Serum lactate
 - Elevated
 - Arterial blood gas
 - Metabolic acidosis
 - Decreased pH
 - Decreased HCO₃⁻

- Focused on improving perfusion status
- Supportive care as needed
- IV fluid volume replacement
- Vasopressors
- Sodium bicarbonate
 - If toxic ingestion caused condition

- Clear, colorless, odorless, viscous liquid solvent found in common household and industrial materials
 - Also found in antifreeze and hydraulic brake fluid
- Common cause of accidental ingestion in pediatric population due to its sweet taste
 - Similar to methanol in presentation
 - Skin exposure does not cause toxicity
 - Ethylene glycol converted to glycoaldehyde via alcohol dehydrogenase

- Glycoaldehyde metabolized to glycolic acid
 - Greatest contributor to metabolic acidosis
- Can form a precipitate with calcium that may cause widespread injury to kidney, brain, and liver tissues
- Clinical presentation of toxicity typically presents in three phases

Ethylene Glycol Toxicity

- Phase I
 - 0–12 hours postingestion
 - Signs and symptoms include:
 - CNS depression phase
 - N/V
 - Ataxia, nystagmus, myoclonic jerking
 - Seizures, coma

Ethylene Glycol Toxicity

- Phase II
 - Cardiopulmonary toxic phase
 - 12–72 hours postingestion
 - Accumulation of oxalate crystal in lung tissue, vascular tree, myocardium
 - Signs and symptoms include:
 - Tachycardia, tachypnea
 - Hypertension

Ethylene Glycol Toxicity

- Phase III
 - Renal toxicity phase
 - Acute tubular necrosis
 - Signs and symptoms include:
 - Flank, abdominal pain
 - Oliguric renal failure

- Diagnostic evaluation
 - Lab data used similar to methanol
 - Urinalysis may reveal:
 - Presence of calcium oxalate crystals
 - Fluorescence under Wood's lamp
 - Serum calcium decreased
 - Secondary to calcium oxalate binding

Ethylene Glycol

Treatment

- Similar to that for methanol
- Hemodialysis definitive treatment
- Supportive care
- IV crystalloid
- 250-500 mL/hr
- Increase GFR, aid in renal clearance of toxins
- IV sodium bicarbonate
- For pH < 7.25
- IV ethanol infusion
- IV fomepizole (Antizol)

- Common medication used for its antiinflammatory, analgesic, and antipyretic properties
- Poisoning can occur with intentional overdose or chronic use

Toxicity

- Cyclic-ATP production decreases
- Oxygen consumption increases
- Carbon dioxide production increases
- Heat production increases
- Krebs cycle changes and carbohydrate metabolism leads to the accumulation of pyruvate, lactate, and acetoacetate, with resultant metabolic acidosis

- Signs and symptoms
 - Tachycardia, tachypnea
 - Fever, increased metabolic rate
 - Abdominal pain, N/V, dehydration
 - Tinnitus, deafness
 - CNS disturbances
 - Mild confusion to coma

- Diagnostic evaluation
 - Arterial blood gas
 - Respiratory alkalosis, metabolic acidosis
 - Coagulation studies
 - Prolonged prothromin time
 - Decreased platelet count
 - Electrolytes
 - Hypokalemia

- Diagnostic evaluation
 - Urinalysis
 - Low pH
 - Salicylate levels
 - Peak levels at 4–6 hours
 - Normal salicylate: 15–30 mg/dL
 - Patients typically symptomatic: 40–50 mg/dL
 - Potentially life threatening: >100 mg/dL

Treatment

- Supportive care
- GI decontamination
- Gastric lavage
- Activated charcoal
- Fluid resuscitation as needed

Treatment

- Urine alkalization
- IV sodium bicarbonate
- 100–150 mEq per liter of IV solution
- Potassium replacement
- If serum levels <3.5 mEq/L</p>
- KCl 20–40 mEq/L of IV solution
- Goal is serum K 4.5–5.0 mg/dL

Normal Ranges

– pH

7.35 - 7.45

 $-pCO_2$

35 - 45 mmHg

 $-pO_2$

80 - 100 mmHg

- HCO₃-

22 – 26 mmol/L

BE

-2 to +2 mmol/L

-SaO₂

> 95 %

Anion Gap

8 - 16 mEq/L

Acid-Base Balancing

Acidosis

Metabolic Acidosis

Respiratory Acidosis

$$\uparrow$$
 CO_2

Alkalosis

Metabolic Alkalosis

Respiratory Alkalosis

$$-\downarrow CO_2$$

Acidosis

- pH < 7.35
- $pCO_2 > 45 mmHg$
- HCO₃ < 22 mmol/L

Alkalosis

- pH > 7.45
- $pCO_2 < 35 mmHg$
- $HCO_3^- > 26 \text{ mmol/L}$

Copyright @ 2003, Mosby, Inc. All Rights Reserved.

• Step 1

- Examine pO₂ and SaO₂
- Determine oxygen status
- Low pO₂ (< 80 mmHg) and SaO₂

	Low	Normal	High
pO ₂	< 80 mmHg	80 – 100 mmHg	> 100 mmHg
SaO ₂	< 95 %	95 – 100 %	100%
	Hypoxia	Adequate	Adequate

- Step 2
 - Examine pH

	Low	Normal	High
рН	< 7.35	7.35 – 7.45	> 7.45
	Acidosis	Normal	Alkalosis

Step 3

- Examine pCO₂ and HCO₃
- Is the pCO₂ abnormal with a normal HCO₃-
- Is the HCO₃ abnormal with a normal pCO₂

	Acidosis		Alkalosis	
	Respiratory	Metabolic	Respiratory	Metabolic
pCO ₂	> 45 mmHg	35 – 45 mmHg	< 35 mmHg	35 – 45 mmHg
HCO ₃ -	22 – 26 mmol/L	< 22 mmol/L	22 – 26 mmol/L	> 26 mmol/L

• Step 4

Determine if there is a compensatory mechanism in place to try and correct the pH

	Acidosis		Alkalosis	
	Respiratory	Metabolic	Respiratory	Metabolic
pCO ₂	> 45 mmHg	< 35 mmHg	< 35 mmHg	> 45 mmHg
HCO ₃ -	> 26 mmol/L	< 22 mmol/L	< 22 mmol/L	> 26 mmol/L
	Compensated	Compensated	Compensated	Compensated

What are the compensations?

- In respiratory conditions the kidneys will attempt to compensate and visa versa
- Ex:
 - In chronic respiratory acidosis (COPD) the kidneys increase the elimination of H⁺ and absorb more HCO₃⁻
 - The ABG will show normal pH, ↑CO₂ and ↑ HCO₃⁻
- Buffers kick in within minutes
 - Respiratory compensation is rapid and starts within minutes and complete within 24 hours
 - Kidney compensation takes hours and up to 5 days.

• It just takes some practice...

Number 1

– pH

-pCO₂

 $-pO_2$

- HCO₃-

 $-S_aO_2$

7.48

32 mmHg

90 mmHg

24 mmol/L

95 %

High

- Low

Normal

Normal

Normal

Respiratory Alkalosis

• Number 2

– pH

- pCO₂

 $-pO_2$

- HCO₃-

 $-S_aO_2$

7.32

48 mmHg

60 mmHg

25 mmol/L

90 %

Low

- High

– Low

Normal

– Low

Respiratory Acidosis

• Number 3

– pH

-pCO₂

 $-pO_2$

- HCO₃-

 $-S_aO_2$

7.30

40 mmHg

95 mmHg

18 mmol/L

100 %

- Low

Normal

Normal

– Low

Normal

Metabolic Acidosis

Number 4

– pH

7.38

Normal

 $-pCO_2$

48 mmHg

High

 $-pO_2$

87 mmHg

Normal

- HCO₃-

28 mmol/L

- High

 $-S_aO_2$

94 %

Low

Respiratory Acidosis with Metabolic Compensation

• Number 5

– pH

- High

 $-pCO_2$

40 mmHg

Normal

 $-pO_2$

94 mmHg

Normal

- HCO₃-

30 mmol/L

- High

 $-S_aO_2$

99 %

7.49

Normal

Metabolic Alkalosis

Number 6

– pH

7.35

Normal

 $-pCO_2$

48 mmHg

- High

 $-pO_2$

62 mmHg

– Low

- HCO₃-

27 mmol/L

- High

 $-S_aO_2$

91 %

Low

Respiratory acidosis with metabolic compensation

Number 7

– pH

7.45

Normal

 $-pCO_2$

47 mmHg

- High

 $-pO_2$

93 mmHg

Normal

- HCO₃-

29 mmol/L

- High

 $-S_aO_2$

97 %

Normal

Metabolic Alkalosis with respiratory compensation

Number 8

– pH

-pCO₂

 $-pO_2$

- HCO₃-

 $-S_aO_2$

7.31

38 mmHg

95 mmHg

15 mmol/L

99 %

– Low

Normal

Normal

- Low

Normal

Metabolic Acidosis

Number 9

– pH

- pCO₂

 $-pO_2$

- HCO₃-

 $-S_aO_2$

7.30

50 mmHg

65 mmHg

24 mmol/L

89 %

– Low

- High

– Low

Normal

– Low

Respiratory Acidosis

• Number 10

– pH

 $-pCO_2$

 $-pO_2$

- HCO₃-

 $-S_aO_2$

7.48

40 mmHg

110 mmHg

30 mmol/L

100 %

- High

Normal

High

- High

Normal

Metabolic Alkalosis

Obtaining an ABG

Equipment required

- One 20-gauge to 25-gauge, 1-inch to 1.5-inch hypodermic needle (note: longer needles are needed for brachial and femoral artery puncture)
- One 1 to 5 mL pre-heparinized syringe with a rubber stopper or cap
- Two 2 X 2 gauze pads
- Antiseptic solution/Alcohol Swabs
- One plastic bag (for transport of sample to laboratory)
- One adhesive bandage
- PPE
- Container with crushed ice or cold water

- If the radial artery is to be used, perform the modified Allen's Test
 - Recommended before a radial artery puncture to assess the patency of the ulnar artery and an intact superficial palmar arch

Procedure

- Have patient raise hand over their head and make a fist several times
- With the hand clenched, apply direct pressure on the radial and ulnar arteries (A)
- Instruct patient to lower arm then open fist (B)
- Release pressure over ulnar artery and observe for return of color (C)
 - < 7 seconds
 - Indicates positive result (ulnar artery and superficial palmar arch intact)
 - 8 to 14 seconds
 - equivocal
 - > 14 seconds
 - Indicates negative result (ulnar artery may be occluded, do not perform radial puncture)

Procedure

- Palpate selected artery and stabilize artery
 - If radial
 - Confirm positive modified Allen Test
 - Stabilize artery by hyperextending wrist slightly
- Clean area with alcohol swab or antiseptic
- Palpate pulse proximal to insertion site
 - Hold alcohol swab with same fingers used to palpate artery
- Insert needle bevel up
 - Radial
 45° (30° 60°) angle
 - Femoral 60° 90° angle
- Stop advancing when blood is noted
- Collect 2 3 ml of blood into syringe
- Hold alcohol swab over puncture site and withdraw needle
- Apply pressure over injection site for 5 minutes
 - 10 if on anticoagulants
 - Reassess pulse
- Remove air from syringe, remove needle and place cap on syringe
- Dispose of sharps
- Place in bag, label
- Place on ice and ship

