RESCUE AWARENESS AND OPERATIONS

Primary Care Paramedicine

Module: 20

Section: 03a

- Role of the Paramedic
- Protective equipment
- Safety procedures
- Rescue operations
- Types of rescues

Introduction

- Rescue is the "act of delivering from danger or imprisonment."
- In EMS, rescue means extricating and/or disentangling the victims who will become your patients.

- The role of EMS in rescue varies from area to area.
- Some areas may require training beyond the awareness level.
- All paramedics should have training and PPE to allow:
 - Access to the patient
 - Provide assessment
 - Establish incident command.

- Paramedics in rescue operations will typically function in two roles:
 - Rescuer rehab and monitoring
 - Active patient care

• Six Functions:

- Medical monitoring and treatment
- Revitalization
- Transportation
- Critical incident stress management
- Reassignment

• Rehab (rest and recovery) is a vital factor for the Paramedic to consider when supporting rescue or fire operations.

- When supporting a rehab station, there are some things to keep in mind when monitoring rescuers:
 - Physiological job stressors: fatigue, insufficient fluid or food intake, physical demands
 - Environmental job stressors: adverse weather conditions, unfamiliar locations, smoke-filled or unsafe environments

Role of the Paramedic

- Personal protective equipment (PPE) use
 - Contributes to heat stress
 - Can weigh up to 40 lbs.
 - Increases energy needed to move
 - Traps body heat
 - Acts as vapor barrier

- State in which fluid losses exceed intake
- Rescuers can lose up to 2 litres of fluid in less than 1 hour
- Fluid loss reduces strength, endurance, and mental judgment

- During strenuous activity, the body burns carbohydrates and fats for energy.
- Essential to refuel energy sources with nutritious food

Rescue is a dangerous activity, and safety is the number one priority.

Personal Protection

- Gloves
- Eyewear
- Boots
- Isolation gown

Protective Equipment

- Helmets
- Eye protection
- Hearing protection
- Respiratory protection
- Gloves
- Ear plugs

- Flame protection
- Personal floatation devices
- Lighting
- Hazmat suits
- Wilderness protection

Patient Protection

- Helmets
- Eye protection
- Hearing and respiratory protection
- Protective blankets
- Protective shielding

Rescue SOPs

- Includes provision for a safety officer that makes a "go or no go" decision
- Crew Assignments
 - Personnel screening used to determine assignments
- Planning
 - Utilize test runs

- Phase One—Arrival and scene size-up
- Phase Two—Hazard control
- Phase Three—Patient access
- Phase Four—Medical treatment
- Phase Five—Disentanglement
- Phase Six Patient packaging
- Phase Seven —Removal/transport

Phase One: Arrival and Scene Size-up

Phase Two: Hazard Control

- On-scene hazards must be identified with speed and clarity.
- A sampling of dangerous conditions you may encounter:
 - Poisonous substances
 - Biological agents
 - Swift-moving currents
 - High angle entrapments

Phase Three: Patient Access

The third step of a rescue operation is gaining access to the patient.

Phase Four: Medical Treatment

Goals of Rescue Assessment

- Identify and care for existing problems.
- Anticipate changing patient conditions and determine in advance the assistance and equipment needed.
- Become familiar with specific injuries with rescue operations: rescue trauma, crush injuries...

Goals of Rescue Assessment

Phase Five: Disentanglement

Phase Six: Packaging

Phase Seven: Transport

- Attempt communications with the patient during the rescue operation.
- Reassure victim of his or her safety.

- To help keep a patient calm:
 - Make and keep eye contact with the victim.
 - Tell the truth.
 - Communicate at a level he or she can understand.
 - Be aware of your own body language.
 - Always speak slowly, clearly and distinctly.

- To help keep a patient calm (cont):
 - Use a victim's proper name.
 - Speak clearly and directly at victim.
 - Allow time for victim to respond to your questions.
 - Try to make the victim comfortable and relaxed.

- Many patients will require medical care.
 - Medical care should only be given if it can be done so safely.
 - Do not become a victim yourself during a rescue attempt.
 - Standard patient care protocols apply unless stated by medical direction or exceptional circumstances.

- Water rescues may involve many kinds of water bodies—
 pools, rivers, streams, lakes, canals, flooded gravel pits or even
 the ocean.
- Nearly all incidents around water are preventable

Surface Water Rescues

• A personal flotation device (PFD) is mandatory equipment for

- Incapacitation and inability to self-rescue
- Inability to follow simple directions
- Inability to grasp a line or floatation device
- Laryngospasm

 Safe ice rescue requires proper equipment and protective clothing.

Basic Water Rescue Model

- By far the most dangerous water rescues involve water that is moving.
- Competency at handling the power and dynamics of swift-water rescues comes only with extensive training and experience.

The movement of currents can create a "drowning machine."

Currents can force a person up against a "strainer."

- Cover mouth and nose on entry
- Protect head and keep face out of water
- Do not attempt to stand up in moving water
- Swim with the current angled towards shore
- Look for water hazards

Water Rescue

Water rescue with possible spinal injury

- Age
- Posture
- Lung volume
- Water temperature
- Use of PFDs
- Mammalian diving reflex

- Confined-space rescues present any number of potentially fatal threats
 - One of the most serious is an oxygen-deficient environment.
- 60% of all fatalities associated with confined spaces are people attempting to rescue a victim!

Look For Warning Signs

Confined Space

Confined Space

 Entering confined spaces, such as silos, requires training, equipment and

experience.

Confined Space Hazards

- Oxygen-deficient atmospheres
- Toxic or explosive chemicals
- Engulfment
- Machinery entrapment
- Electricity
- Structural concerns

Highway Operations and Vehicle Rescues

Traffic Hazards

- Staging
- Positioning of apparatus
- Emergency lighting
- Redirection of traffic
- High visibility

Other Hazards

- Fire and fuel
- Alt. fuel systems
- Sharp objects
- Electric power
- Energy-absorbing bumpers
- Air bags
- Hazardous cargoes
- Rolling vehicles
- Unstable vehicles

Electrical Hazards

- MVCs present EMS with the most common access and extrication problems.
- You must know some basic information about automobile construction or "anatomy."
- Considerations include:
 - Frame/construction
 - Firewall/engine-compartment components
 - Types of glass
 - Doors

- Initial scene size-up.
- Control hazards.
- Assess the degree of entrapment.
- Establish circles of operation.
- Treatment, packaging, removal.

- Steep slope or low angle terrain
- Vertical or high angle terrain
- Flat terrain with obstructions
- Scrambling
 - Climbing over rocks or tree without the aid of a rope
- Scree
 - Loose pebbles or rock debris that forms on slopes or the sides of mountains

Basket Stretcher

- Helicopters can be useful in hazardousterrain rescues.
- Weight the advantages, disadvantages and restrictions for:
 - Boarding and debarking
 - Passenger restrictions
 - Cable winches
 - Weight restrictions
 - Equipment restrictions

Extended Care Assessment

- Long-term hydration management
- Repositioning of dislocations
- Cleansing and care of wounds
- Removal of impaled objects
- Pain management
- Management issues

- Weather and extreme temperatures
- Limited patient access
- Difficulty transporting street equipment
- Cumbersome PPE
- Patient exposure
- Patient monitoring
- Improvisation

- Technical rescue operations are dangerous for both rescuers and patients.
- During the rescue phase, medics are typically in supportive role for the rescuers and any mobile patients.
- Once the patient has been extricated then patient care and management is handed over to medical personnel

- Role of the Paramedic
- Protective equipment
- Safety procedures
- Rescue operations
- Types of rescues