

Metabolism

 Includes all the chemical reactions in the body, including the utilization of nutrients

Nutrition

 The acquisition, assimilation and utilization of nutrients

- Mechanical
 - Mastication
 - Deglutition
 - Peristalsis and Segmentation

Gastric Motility

- Food stored in stomach is mixed with gastric juices to form chyme
- Ejected into duodenum
- Controlled by hormonal and nervous systems
 - Fats and nutrients stimulate the release of gastric inhibitory peptide (GIP) into blood
 - When this reaches the wall of stomach inhibits peristalsis
 - Nervous system (via vagus) inhibit peristalsis due to acid presence or distention

Intestine Motility

- Segmentation
 - mixes chyme with secretions from pancreas, liver and mucosa
- Peristalsis
 - Regulated by intrinsic stretch reflexes
 - May also be stimulated by cholecystokininpancreozymin (CCK) secreted by the mucosa when chyme is present

- Chemical Digestion
 - All changes in chemical composition
 - Uses Digestive Enzymes to catalyze reactions

- Two types
 - Anabolism
 - Catabolism

Anabolism

- Synthesis small molecules to form bigger molecules
- Small molecules react to produce water and a larger molecule
- Requires energy
- These reactions represent dehydration synthesis

Catabolism

- Break down of large molecules into smaller molecules
- Water is used to split the larger molecule into two parts (hydrolysis)
- Releases energy

Energy From Foods

- Nutrients are "burned" in the cell as it is used during cellular respiration
- These reactions release energy
- Some is stored as ATP
- Remainder given off as heat

$$ATP \rightarrow ADP + P + Energy$$

Carbohydrates

Proteins

Copyright @ 2003, Mosby, Inc. All Rights Reserved.

- Components of food that resist digestion
- Eliminated as feces

Saliva

- Secreted by salivary glands
- Mostly water
- Contains
 - Amylase Carbohydrate digestive enzyme
 - Lipid digestive enzyme
 - NaHCO₃ Helps produce alkaline environment for

amylase

Helps mechanically digest food

Secretions

Gastric Juice

- Chief Cells
 - Secrete enzymes of gastric juice (Pepsinogen)
 - Inactive form of pepsin (breakdown most proteins), activate by HCl
- Parietal Cells
 - HCI
 - » Kills bacteria and give acidic environment for enzymes
 - Intrinsic Factor
 - » Aids in B12 absorption

Phases of Secretions

- Cephalic
 - Thinking of food produces vagal stimulation and produces secretions
- Gastric
 - Food enters stomach
 - More secretions (2/3)
- Intestinal
 - Chyme passes into duodenum
 - Secretions cease

Absorption

- Expulsion of feces from digestive tract (defecation)
- Reflex of stimulation of receptors in rectal mucosa

Metabolism of Carbohydrates

- Glycolysis (first reaction)
 - Occurs in the cytoplasm
 - Is anaerobic (provides cells with energy in a low oxygen environment)
 - Splits glucose into 2 pyruvic acid molecules
 - This requires 2 ATP to get started but yields 4 ATP
 - Most appears as heat
 - Prepares glucose for second step (Citric Acid Cycle)

Krebs Cycle

- If no O₂ is present PA is converted to Lactic acid
- If O₂ then aerobic metabolism takes place in mitochondria producing Acetyl-CoA
- In the mitochondria the Acetyl-CoA enters a series of reactions called the citric acid cycle (Krebs cycle)
- High energy yields enter electron transport system

Electron Transport System

- Energy electrons enter chain of carrier molecules in the mitochondria
- As they move done the chain the release small bursts of energy
- This yields 36 to 38 ATP

- If excessive glucose than liver converts and stores (glycogenesis)
- If not enough liver breaks glycogen down (glycogenolysis)
- If no glucose present then liver uses proteins, glycerol or fats (gluconeogenesis)

- Compounds of Fats, oil and related substances
 - Triglycerides (glycerol and 3 fatty acids)
 - Phospholipids
 - Cholesterol
- Classed as Saturated or Unsaturated
 - Saturated have all available bonds filled with Hydrogen atoms

Transport of lipids

- Transported in blood as
 - Chylomicrons
 - Small fat droplets comprised of triglycerides, cholesterol and phospholipids
 - Absorbed into adipose tissue
 - Lipoproteins
 - Made in liver
 - Blood then contains VLDL, LDL and HDL
 - Fatty acids
 - Carried by albumin

- Energy derived from food is measured in kcal or C
- 1 C is the amount of energy required to raise 1 kg of water 1°C
- Energy is used in 3 ways:
 - Basal metabolism
 - Physical activity
 - Thermogenesis

Uses of Energy

- Basal metabolism
 - The basilar metabolic rate (BMR) is the energy required to maintain the body functioning at a minimal level
 - May be influenced by

```
Size (more muscle – more metabolism)
```

Sex (males are higher)

Age (decreases)

Hormones (may increase)

• Fever (increase)

• Drugs (Caffeine....increase)

Emotions (increase)

Total Metabolic Rate

 Amount of energy used or expended by the body in a given time (kcal/hr)

Copyright © 2003, Mosby, Inc. All Rights Reserved.

Regulation of Food Intake

Copyright @ 2003, Mosby, Inc. All Rights Reserved.

Physical Activity

- Muscular contractions require energy
- Accounts for only 25% of use
- May increase with increased activity
- Can be controlled voluntarily
- Thermogensis
 - Energy used to digesting food
 - Accounts for only 10% of usage

Body Temperature

- Maintenance of the core temp is essential for enzyme function
- Average temp 37.6 °C
- Temp at the body surface is called the shell temperature and is typically 37°C (heat loss area)
- Shell Temp is lower than core temp

Body Temperature

Heat Production

- Produced by catabolism of nutrients
 - 40% is used for biological activities
 - Remainder is heat energy
- Changes in temp signal body to maintain homeostasis

Body Temperature

- What happens when you are in a:
 - Hot environment?
 - Cold environment?

 Is temperature regulation negative or positive feedback?