
EMS SYSTEMS

Primary Care Paramedicine

Module: 06

Section: 01

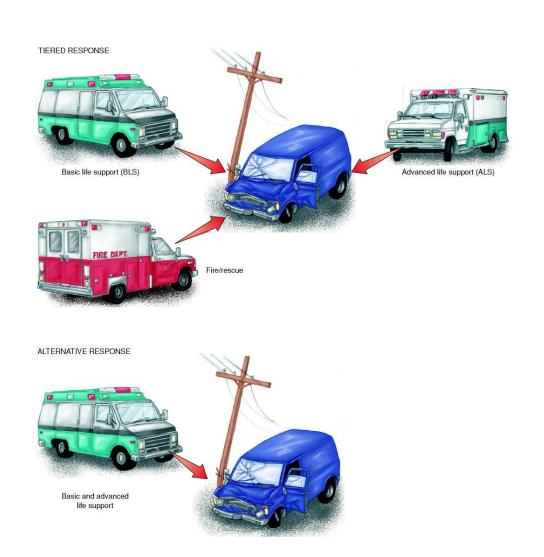
 Comprehensive network of personnel, equipment, and resources established to deliver aid and emergency medical care to the community.

Out-Of-Hospital Components

- Members of the community
- Communications system
- EMS providers
- Public utilities
- Poison control centres
- Fire rescue, hazmat

- Emergency nurses
- Emergency and specialty physicians
- Ancillary services
- Rehabilitation services

- Basic life support
- Refers to the basic lifesaving procedures such as artificial ventilation and cardiopulmonary resuscitation.



- Advanced life support
- Refers to advanced lifesaving procedures such as intravenous therapy, drug therapy, intubation and defibrillation.

Tiered Response

 Some systems are tiered in which BLS arrives first and then, if required, ALS arrives later.

- Remains a provincial/territorial responsibility
- Each developed their own systems and educational programs
- Most have a mix of basic and advanced life support programs
- There are still large differences in the quality of prehospital care across Canada

- NHTSA established elements necessary to all EMS systems
- Not formally adopted by Canadian EMS systems but often referred to

NHTSA System Requirements

- Regulation and policy
- Resources management
- Human resources and training
- Transport
- Facilities

- Communications
- Trauma systems
- Public information and education
- Medical direction
- Evaluation and quality improvement

- There is no one model for the provision of prehospital care in Canada
- Varies from province to province and even city to city

- Provincial or territorial service
- Municipal, upper tier and regional municipality service
- Health authority and public utility model
- Fire based service
- Hospital based service
- Private operator
- Volunteer service

- Made up of a series of systems within a system
- Integration and cooperation of all participants help ensure the best quality of emergency care

Components of an EMS System

- Medical direction
- Public information and education
- Communications
- Education and certification
- Patient transport
- Receiving facilities

- Mutual aid and mass casualty preparation
- Quality improvement and quality assurance
- Research
- System financing
- Certification and licensing of personnel

- EMS systems must retain a medical director
- A physician who is legally responsible for all clinical and patient care aspects of the system
- Medical care provided by paramedics is considered an extension of the medical director's license
- Delegated Medical Acts

Role of the Medical Director

- Educate and train personnel
- Participate in personnel and equipment selection
- Develop clinical protocols in cooperation with expert EMS personnel
- Participate in quality improvement and problem resolution
- Provide direct input into patient care
- Interface between the EMS system and other health care agencies
- Advocate within the community
- Serve as the medical conscience of the EMS system including advocating for patient care

Online Medical Direction

When a qualified physician gives direct orders to a prehospital

Offline Medical Direction

- Refers to medical policies, procedures, and practices that the medical director has set up in advance of the call
- Includes both prospective and retrospective elements

Offline Medical Direction

Prospective

- Guidelines on selection of personnel and supplies
- Training and education
- Protocol development

Retrospective

- Auditing
- Peer review
- QA

Protocols are the policies and procedures for all elements of an EMS system.

- Protocols are designed around the four T's of emergency care.
 - Triage
 - Treatment
 - Transport
 - Transfer

- An essential and often overlooked component of EMS is the public.
- EMS systems should develop plans to educate the public on recognizing an emergency.
 - Accessing the system.
 - Initiating BLS procedures.

- A coordinated, flexible communications plan should include:
 - Citizen access
 - Single control center
 - Operation communication capabilities
 - Medical communication capabilities
 - Communications hardware
 - Communications software

 The ideal communications centre can communicate with and control the movement of all emergency units within an EMS system

Emergency Medical Dispatcher (EMD)

- The activities of an EMD are crucial to the efficient operation of EMS.
- EMDs not only send ambulances to scenes, they also make sure that system resources are in constant readiness.
- EMDs must be medically and technically trained.

- Major goal to locate and implement plans for quick and reliable response coverage
- Continuous coverage of response areas
- Reevaluated on a consistent basis

Education and Certification

- Two kinds of EMS education are:
 - Initial education
 - The original training course for prehospital providers.
 - Continuing education
 - Programs include refresher courses for recertification and periodic in-service training sessions.

Once the initial education is completed, the paramedic will become either certified or licensed.

- A requirement in many provinces to practice
- Requirements
 - Successful completion of a course of education for the level of registration
 - Completion of a regulatory exam

Paramedic Association of Canada

- Formed in 1988
- Canada's only national EMS organization representing prehospital practitioners
- Currently represents over 14 000 members

- Regulation and delivery of EMS services are governed by provincial and territorial bodies
- Exception is the Canadian Armed Forces which is federal
- NOCP provides governing bodies a way to compare programs from different jurisdictions

• Education:

- Voluntary accreditation program established by the Canadian Medical Association (CMA)
- Uses the NOCP to establish levels of accreditation
 - NOCP also identifies the performance environment in which competencies should be evaluated at each level (clinical, field, etc.)

- Ground Ambulance
 - Commission on accreditation of ambulance Services (CAAS)
- Air Ambulance
 - Commission on accreditation of medical transport systems (CAMTS)
- Communications
 - National academies of emergency dispatch (NAED)

Canadian EMS Organizations

- Ambulance Paramedics of British Columbia
- Alberta College of Paramedics
- Saskatchewan Paramedic Association
- Paramedic Association of Manitoba Inc.
- Paramedic Professional Association of Quebec/Association Professionelle des Paramedics du Quebec
- College of Paramedics of Nova Scotia
- Paramedic Association of New Brunswick
- Paramedic Association of Prince Edward Island
- Paramedic Association of the Yukon

- Annals of Emergency Medicine
- EAU FAU Magazine
- Emergency Medical Services
- Canadian Emergency News
- Emergency
- Journal of Emergency Medical Services
- Journal of Emergency Medicine
- Prehospital Emergency Care

- Patients should be taken to the nearest facility whenever possible.
- Medical direction and patient condition should designate the facility.
- Patients may be transported by ground or air.

Type I

- Conventional cab and chassis on which a module body is mounted
- No passageway between driver and patient compartments

Type II

- Standard van, body and cab form an integral unit
- Most have a raised roof

Type III

 Specialty van with forward cab, integral body and passageway between driver and patient compartment

A Type-I Ambulance

A Type II Ambulance

A Type III Ambulance

The helicopter has become an integral part of prehospital care.

• Military helicopters frequently assist civilian EMS systems.

 Not all receiving facilities are equal in emergency and support service capabilities. Local systems and regions categorize

hospitals based on capabilities.

Trauma Centre Designation

Tertiary Trauma Centre

- Regional referral center for critically injured patients
- 24 hour trauma response team

District Trauma Centre

- May function as a trauma center in smaller communities or support a tertiary center
- 24 hour response to provide prompt resuscitation and care for trauma patients

Primary Trauma Centre

- Usually a smaller rural medical center or nursing station
- Provides initial triage but refers all but most minor cases

Mutual Aid and Mass-Casualty Preparation

- A formalized mutual aid agreement ensures that help is available when needed.
- Agreements should be between neighboring departments, municipalities, systems, or provinces/territories
- Each system should also put a disaster plan in place for catastrophes that can overwhelm available resources.

 An EMS system should have a disaster plan in place that is practiced frequently.

- Quality Improvement is a formal approach to the analysis of performance and systematic efforts to improve it.
- This includes:
 - Leadership
 - Information and analysis
 - Strategic quality planning
 - Human resources development and management
 - EMS process management
 - EMS system results
 - Satisfaction of patients and stakeholders

- Quality Assurance (QA)
 - Designed to maintain continuous monitoring and measurement of the quality of clinical care.
- Continuous Quality Improvement (CQI)
 - Designed to refine and improve an EMS system, emphasizing customer satisfaction.

- An EMS system must be designed to meet the needs of the patient.
- Therefore, the only acceptable quality of an EMS system is EXCELLENCE!

Take-It-For-Granted Quality

- People must be able to take for granted that:
 - EMS will respond quickly
 - Act at the highest level of professionalism
 - Provide safe and appropriate care

- New medications, processes or procedures introduced based on the rules of evidence
 - There must be theoretical basis for change.
 - There must be ample research.
 - It must be clinically important.
 - It must be practical, affordable, and teachable.

Take-It-For-Granted Quality

- Also accomplished by the ongoing training of personnel
- Peer review
 - The process of EMS personnel reviewing each other's actions and interactions with patients.

Take-It-For-Granted Quality

- Ethics
 - The standards that govern the conducts of a group or profession.
- All levels of practitioner have an ethical responsibility to their patients and the public

Customer satisfaction can be created or destroyed with a simple word or deed.

- Clinical performance with Economical performance
- The priorities revolve around:
 - Quality patient care
 - Quick response time
 - Cost effective
 - Consumer expectations being met
 - Continuously measured
 - Results achieved

- Research programs are essential for moral, educational, medical, financial, and practical reasons.
- Future EMS research must address the following issues:
 - Which interventions actually reduce morbidity and mortality?
 - Are the benefits of a procedure worth the risk?
 - What is the cost-benefit ratio?

- Components of a research program
 - Identify a problem.
 - Identify the body of knowledge on the subject.
 - Select the best design for the study.
 - Begin the study and collect raw data.
 - Analyze the data.
 - Assess and evaluate the results.
 - Write a concise, comprehensive description of the study for publication in a medical journal.