

Vascular Access

IV FLUIDS

- Types:
 - Crystalloids
 - Colloids

Health Edu Santé

Crystalloids

- Solutions with dissolved crystals in water
- May contain electrolytes (Na, K, Ca, Cl) but lack the large proteins and molecules found in colloids
- Classified according to their "tonicity"
 - Hypotonic
 - Isotonic
 - Hypertonic
- Can equilibrate more quickly between vascular and extravascular spaces
 - 2/3 of crystalloid fluid leaves vascular space ≤ 1 hr
 - 3 mL of crystalloid replaces 1 mL of blood

Hypertonic and Hypotonic Solutions

- Hypertonic solutions
 - Higher osmotic pressure than body cells
 - 7.5% saline

- Hypotonic solutions
 - Lower osmotic pressure than body cells
 - Distilled water
 - 0.45% sodium chloride (0.45% NaCl)

Isotonic Solutions

Lactated Ringer's solution

Normal saline

- Glucose-containing solutions (e.g., D₅W)
 - Dextrose is readily used up leaving only the water to affect the space

Health Edu Santé

Colloids

- Solutes in the form of large proteins or other similarly sized molecules
 - So large that they cannot pass through the walls of the capillaries and onto the cells
- Remain within blood vessels longer
- Can significantly increase the intravascular volume
 - May be beneficial in the short term, continual movement in this direction can cause the cells to lose too much water and become dehydrated
- Colloids are useful in maintaining blood volume
- Examples
 - Whole blood, Fresh or frozen Plasma, Packed RBC's
 - Human serum Albumin
 - LMW Hydroxyethyl starch (Pentaspan)
 - HMW Hydroxyethyl starch (Hetaspan)
 - Dextran

Advantages

- Less edema
- Less volume administered
- Less thermal load effect for given level of plasma volume expansion
- Volume administer stays in intravascular space longer

Disadvantages

- Decreased hemoglobin
- Dilution of plasma proteins (Dextrans, HES)
- Dilution of coagulation factors (PT, PTT)
- Pulmonary edema (due to changes in osmotic pressures)
- Allergic reaction

Theory of Fluid Flow

- Flow of fluid through catheter (Poiseuille's Law)
 - Directly related to diameter (to the fourth power)
 - Inversely related to length
- Also affect fluid flow:
 - Diameter and length of tubing
 - Size of vein
 - Viscosity and temperature of fluid
 - Viscosity is affected by temperature
 - Warm fluids flow faster

Q	Flow rate	
P	Pressure	
r	Radius	
η	Fluid viscosity	
1	Length of tubing	

$$Q = \frac{\pi \operatorname{Pr}^4}{8\eta l}$$

IV Solution Containers

 Do not use any IV fluids after their expiration date; any fluids that appear cloudy, discolored, or laced with particulate; or any fluid whose sealed packaging has been opened or tampered with.

IV Administration Sets

- Macrodrip
 - 10 to 20 gtts = 1 ml, for giving large amounts of fluid.
- Microdrip
 - 60 gtts = 1 ml, for restricting amounts of fluid.
- Blood tubing
 - Has a filter to prevent clots from blood products from entering the body.
- Measured volume
 - Delivers specific volumes of fluids.

IV Administration Sets

- IV extension tubing
 - Extends original tubing.
- Electromechanical pump tubing
 - Specific for each pump.
- Miscellaneous
 - Some sets have a dial that can set the flow rates.

Macrodrip and Microdrip Administration Sets

Measured Volume Administration Set

Intravenous Cannulas

- Over-the-needle catheter
- Hollow-needle catheter
- Plastic catheter inserted through a hollow needle

Over-the-Needle Catheter

Hollow-Needle Catheter

Catheter Inserted Through the Needle

Vascular Access

PERIPHERAL IV ACCESS

Intravenous (IV) Access

- Indications
 - Fluid and blood replacement
 - Drug administration
 - Obtaining venous blood specimens for lab analysis
- Types
 - Peripheral venous access
 - Central venous access

Contraindications

- Distal to a fracture site in a limb
- Through damaged or abraded skin
 - Burns may be an exception if there is no other accessible site
- In an arm affected by a radical mastectomy, edema, blood clot or infection
- In an arm with a fistula for dialysis or a peripherally inserted control catheter (PICC Line)

Where do we cannulate?

- Hand
- Forearm
- Neck
- Foot

Peripheral IV Access Sites

Vein Selection

- Based on:
 - Condition
 - Location
 - Purpose
 - Duration

Equipment Required

- Solution
- Administration set
- IV cannula
- Tourniquet
- Alcohol swab
- Gloves
- Sharps bin
- Op site and gauze
- Tape
- If performing a Lock
 - Lock, syringe and saline

Insert the intravenous cannula into the vein.

Withdraw any blood samples needed.

Connect the IV tubing

Secure the site.

Changing an IV Bag or Bottle

- Prepare the new bag or bottle.
- Occlude the flow from depleted bag or bottle.
- Remove spike from depleted bag or bottle.
- Insert spike into the new IV bag or bottle.
- Open the clamp to appropriate flow rate.

Fluid Replacement

- Blood
 - Replaced at a ratio of 3:1 of IV fluid to blood being replaced
- Minimum daily requirements

```
- 1<sup>st</sup> 10 kg 100 ml/hr
```

$$- 2^{nd} 10 \text{ kg}$$
 50 ml/hr

$$-3^{rd}$$
 10 kg 20 ml/hr

- Usually does not exceed 190 ml/hr
- Example 50 kg patient
 - 100 ml/hr + 50 ml/hr + 20 ml/hr + 10 ml/hr + 10 ml/hr = 190 ml/hr

Complications

- Local complications
 - Hematomas
 - Infiltration
 - Necrosis
 - Thrombophlebitis
- Systemic complications
 - Pulmonary edema
 - Speed shock
 - Pyrogenic reaction
 - Pulmonary embolism
 - blood
 - Air
 - Catheter shear

Local - Hematomas

- Causes:
 - Punctured vein
- Symptoms:
 - Bruising
 - Tenderness
 - Swelling
- Preventative actions:
 - Proper techniques

Health Edu Santé

Local - Infiltration

Causes:

- Poor insertion techniques
- Improper taping
- Over active patient
- IV slows or stops

• Symptoms:

- Swelling or hardness
- Feeling of coldness
- Leaking at the site

Preventative actions:

- Armboards, proper taping
- Routine checks of IV flow and site

- Causes:
 - Irritation of tissues from infiltrated drug or fluid
- Symptoms:
 - Swelling, tenderness
 - Inflammation or bruising
- Preventative actions:
 - Routine checks
 - Report any changes

Local - Thrombophlebitis

- Causes:
 - Trauma to endothelium from chemical means
- Symptoms:
 - Pain, redness, swelling along infected vein
 - Generalized symptoms such as fever, malaise, rapid pulse
- Preventative actions:
 - Avoid insertion over joint
 - Select veins with adequate blood flow for infusions of hypertonic solutions

Systemic – Pulmonary Edema

• Causes:

- Circulatory overload from too rapid infusion when patient has impaired renal or cardiac function
- Symptoms:
 - JVD, ↑BP, ↑Resps, dyspnea, agitation
- Preventative actions:
 - Watch rate
 - Oxygen, sit pt upright
 - Slow IV and contact OLMC

Systemic – Speed Shock

- Causes:
 - IV running to rapidly
 - Rapid injection of a drug
- Symptoms:
 - $-\downarrow$ BP, rapid pulse
 - Labored resps, cyanosis
 - Faint, ↓LOC
- Preventative actions:
 - Use controlled volume infusion set
 - Upon initiation, ensure free flowing prior to rate adjustment

Systemic – Pyrogenic Reaction

- Causes:
 - Contaminated IV solutions
- Symptoms:
 - Symptoms generally occur after IV begun
 - 一个temp, chills, headache, N/V, circulatory collapse
- Preventative actions:
 - Check IV fluids for cloudiness and particles
 - Use fresh open IV's

Systemic – PE (Blood/Embolus)

Causes:

- Unfiltered blood
- Partially dissolved drug
- Particulate matter in IV solution

Symptoms:

- Dyspnea, cyanosis, pain, anxiety, tachycardia, tachypnea
- Preventative actions:
 - Infuse blood through filter
 - Dissolve drugs completely
 - Use good judgment when syringing IV's

Systemic – PE (Air)

- Causes:
 - Failure to clear tubing of air
 - Allowing air to enter the system
- Symptoms:
 - Cyanosis, ↓BP, weak, tachycardia, ↓LOC, non-specific chest or ABD pain
- Preventative actions:
 - Don't let IV run dry
 - Clear tubing properly
 - Check syringe prior to injecting
 - If occurs place pt on left side and contact OLMC

Health Edu Santé

Troubleshooting

- If blood begins to flow back in the IV tubing
 - Check location of the bag to insure it is in a gravity flow location
 - Insure all valves are open
 - If continues, reassess site and assure arterial cannulation has not occurred
- If your IV does not run...
 - Start at the top, work your way back to the patient
 - Is the bag empty?
 - Check the IV set clamps to insure they are open
 - Check tubing for kinks
 - Check site for any problems
 - Blood backing up
 - Infiltration
 - Do you need to flush the site
 - Is your tourniquet still one!

 Remove any IV that will not flow or has fulfilled its need.

Vascular Access

PERIPHERAL INTRAVENOUS ACCESS IN AN EXTERNAL JUGULAR VEIN

Place the patient in a supine or Trendelenburg position.

• Turn the patient's head to the side opposite of access and cleanse the site.

 Occlude venous return by placing a finger on the external jugular just above the clavicle.

 Point the catheter at the medial third of the clavicle and insert it, bevel up, at a 10°-30° angle.

• Enter the jugular while withdrawing on the plunger of the attached syringe.

Vascular Access

INTRAVENOUS ACCESS WITH A MEASURED VOLUME ADMINISTRATION SET

Prepare the tubing

- OSCAR
 - Open
 - Squeeze
 - Close
 - And
 - Release

Open and Squeeze

- Open the uppermost clamp and fill the burette chamber with approximately 20 ml of fluid.
- Squeeze the drip chamber to fill (no more then ½ full)

 Close the uppermost clamp and open the flow regulator.

Vascular Access

INTRAVENOUS ACCESS WITH BLOOD TUBING

 Insert the flanged spike into the spike port of the blood and/or normal saline solution.

 Squeeze the drip chamber until it is one third full and blood covers the filter.

 Attach blood tubing to the intravenous cannula or into a previously established IV line.

Open the clamp(s) and/or flow regulator(s) and adjust the flow rate.

Vascular Access

PUMPS

Electromechanical Infusion Devices

- Infusion controllers
- Infusion pumps

Infusion Pump

Syringe-Type Infusion Pump

Vascular Access

IV CALCULATIONS

Calculating flow rates

$$Drops/\min(\frac{gtts}{min}) = \frac{Volume\ to\ be\ administered\ (ml)\ X\ Drip\ Set\ (\frac{gtts}{ml})}{Time\ to\ be\ infused\ (min)}$$

Drip Set (gtts/ml)	Drops to achieve 1 ml of solution	Factor
10 (macro)	10	6
15	15	4
20	20	3
60 (micro)	60	1

Calculations

 Your patient is to receive 1000 ml of normal saline (NS) over a 12 hour period using a microdrip (60 gtt/ml) administration set. The formula will now look like this:

$$Drops/\min(\frac{gtts}{min}) = \frac{Volume\ to\ be\ administered\ (ml)\ X\ Drip\ Set\ (\frac{gtts}{ml})}{Time\ to\ be\ infused\ (min)}$$

$$=\frac{1000 \ ml \ X \ 60 \ gtts/ml}{720 \ min}$$

$$= 83.33 gtts/min$$

Now add medications

 A physician orders 2 mg/min of Lidocaine to your patient. She orders 2 g of lidocaine to be added to 500 ml NaCL. Using a 60 gtt/ml set, calculate the gtt/min.

Calculation

Step 1: Calculate the concentration of the drug in the solution

$$[] = \frac{Mass}{Volume}$$

$$=\frac{2.0\ g}{500\ ml}$$

$$=\frac{2000\ mg}{500\ ml}$$

$$= 4 mg/ml$$

Step 2: Calculate the Desired Dose of the medication needed

$$Dose = \frac{Want}{Have} \times Volume$$

$$= \frac{2.0 \ mg/min}{2000 \ mg} \times 500 \ ml$$

$$=\frac{1000 \ mgml/min}{2000 \ mg}$$

$$= 0.5 ml/min$$

Calculation

Step 3: Calculate the Drip Rate based on the calculated Desired Dose

$$Drops/\min(\frac{gtts}{min}) = \frac{Volume\ to\ be\ administered\ (ml)\ X\ Drip\ Set\ (\frac{gtts}{ml})}{Time\ to\ be\ infused\ (min)}$$

$$= \frac{0.5 \, ml \, X \, 60 \, gtts/ml}{1 \, min}$$

$$= 30 gtts/min$$

A Variation to the Same

$$Drops/\min(\frac{gtts}{min}) = \frac{Volume\ (ml) \times Ordered\ \left(\frac{mg}{min}\right) X\ Drip\ Set\ \left(\frac{gtts}{ml}\right)}{On\ Hand\ (mg)}$$

$$= \frac{500 \ ml \times 2 \ \frac{mg}{min} X \ 60 \frac{gtts}{ml}}{2000 \ mg}$$

= 30 gtts/min

- Your pt is a 40 y/o, 220 lb male who is one week post operative bowel surgery, released from hospital 3/7 ago, responsive but lethargic. His SaO₂ is 95% on RA, HR 124 Reg and Weak, BP 70/40.
- Your interventions of airway management and a bolus of NaCl and have not shown a hemodynamic change. The CPG requires the ACP to begin an infusion of dopamine.
- The medication is provided in a premixed bag containing 800 mg of drug in 500 ml of saline.
- What is the concentration of the medication and at what drip rate should it be administered to achieve the dose of 5 µg/kg/min using a micro drop set?

Vascular Access

IO INFUSIONS

Intraosseous Infusion

- A rigid needle is inserted into the cavity of a long bone.
- Used for critical situations when a peripheral IV is unable to be obtained.
- Initiate after 90 seconds or three unsuccessful IV attempts.

- Children less than 6 years old.
 - Shock, cardiac arrest or status seizure.
 - Unable to start peripheral line after one attempt; peripheral IV is always attempted first, intraosseous second.
 - If on visual inspection unable to see good peripheral vein, go straight to intraosseous (IO) infusion

Pediatric and adult IO needle placement sites.

Intraosseous Needles

- Prepare the equipment
- Select the appropriate site
- Clean the site

• Aspirate to confirm proper placement.

Connect the IV fluid tubing.

- Secure the needle appropriately.
- Adjust flow rate accordingly.

 Administer the medication. Monitor the patient for effects.

IO Complications

- Fracture
- Infiltration
- Growth plate damage
- Complete insertion
- Pulmonary embolism
- Infection

- Thrombophlebitis
- Air embolism
- Circulatory overload
- Allergic reaction

Contraindications

- Fracture to tibia or femur on side of access
- Osteogenesis imperfecta
 - Congenital bone disease resulting in fragile bones
- Osteoporosis
- Establishment of a peripheral IV line

Vascular Access

PRINCIPLES IN PHLEBOTOMY

Why is phlebotomy performed?

- To obtain venous blood samples to determine/obtain:
 - Blood composition
 - Electrolyte levels
 - Substance levels
 - Blood cultures

Equipment required

- Blood Bottles
- Vacutainer holder
- Cannula
- Tourniquet
- Alcohol swab
- Gloves
- Sharps Bin
- Gauze
- Tape

Blood Tubes

Blood Tubes

Order#	Tube Colour	Collection Tube	Purpose
1	Aerobic/Anaerobic	Blood Cultures	
2	Light Blue	Sodium Citrate Tube	sodium citrate as an anticoagulant - coagulation studies
3	Red	Serum Tube	contains no anticoagulant - serum for selected chemistry tests, clotted blood for immunohematology
4	Gold	SST Gel Separator Tube	contain a special gel that separates blood cells from serum, as well as particles to cause blood to clot quickly
5	Light Green	PST Gel Separator Tube with Heparin	Contains lithium heparin for plasma separation
6	Dark Green	Heparin Tube	contains sodium heparin - used for collection of heparinized plasma or whole blood for special tests
7	Lavender	EDTA Tube	EDTA as an anticoagulant - used for most hematological procedure
8	Grey	Fluoride Tube	contains potassium oxalate as an anticoagulant and sodium fluoride as a preservative - used to preserve glucose in whole blood and for some special chemistry tests

Vacutainer and Leur Lock

Leur Sampling Needle

- Practice universal precautions:
 - Wear gloves when handling blood/body fluids.
 - Change gloves after each patient or when contaminated.
 - Wash hands frequently.
 - Dispose of items in appropriate containers.

- Dispose of needles immediately upon removal from the patient's vein.
- Do not bend, break, recap, or re-sheath needles to avoid accidental needle puncture or splashing of contents.
- Clean up any blood spills with a disinfectant such as freshly made 10% bleach.

- Position the patient.
- Apply tourniquet 3 4 inches above the selected puncture site.
- The patient should make a fist without pumping the hand.
- Select the venipuncture site.
- Prepare the patient's arm using an alcohol prep.

Selecting the Vein

Cleansing the site

- Grasp the patient's arm firmly using your thumb to draw the skin taut and anchor the vein.
- The needle should form a 15 to 30 degree angle with the surface of the arm.

Inserting the needle

- Swiftly insert the needle through the skin and into the lumen of the vein.
- Avoid trauma and excessive probing.

Proper catheter placement

Obtaining the sample

- When the last tube to be drawn is filling, remove the tourniquet.
- Remove the needle from the patient's arm using a swift backward motion.
- Press down on the gauze once the needle is out of the arm, applying adequate pressure to avoid formation of a hematoma.
- Dispose of contaminated materials/supplies in designated containers.

 What to do when blood doesn't flow, a hematoma occurs, or an artery is punctured

Troubleshooting

- No flow due to needle not in lumen
 - Insert needle further until "pop" felt and blood flows into collection tube

- Needle too far lumen passed and needle in interstitial space
 - Withdraw slightly and retry blood collection

Troubleshooting

- Needle against wall of vessel
 - Reposition angle of needle

Troubleshooting

- Hematoma created
 - Release tourniquet
 - Withdraw needle
 - Apply pressure

Preventing Hematomas

- Puncture only the uppermost wall of the vein
- Remove the tourniquet before removing the needle
- Use the major superficial veins
- Make sure the needle fully penetrates the upper most wall of the vein
 - Partial penetration may allow blood to leak into the soft tissue surrounding the vein by way of the needle bevel
- Apply pressure to the venipuncture site

- Vein collapse
 - Re-secure tourniquet to increase venous swelling

Arterial puncture

Withdraw needle and simultaneously apply pressure for five minutes

In hospital protocol

- Once blood is collected...
 - Label all appropriate tubes at the patient bedside.
 - Deliver / send all specimens promptly to the laboratory.

Needle stick procedure

- Remove your gloves and dispose of them properly.
- Squeeze puncture site to promote bleeding.
- Wash the area well with soap and water.
- Record the patient's name and ID number.

Needle sticks

- Follow institution's guidelines regarding treatment and follow-up.
- NOTE: The use of prophylactic zidovudine following blood exposure to HIV has shown effectiveness (about 79%) in preventing seroconversion