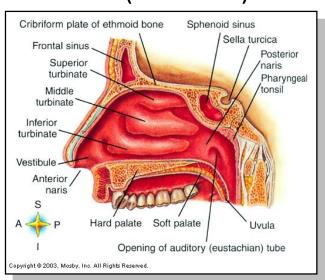

The Respiratory System

 "A complex series of interacting and coordinated processes that have a critical role in maintaining the stability, or constancy of our internal environment."

The Respiratory System

- Divided into two sections:
 - Upper Airway
 - Lower Airway



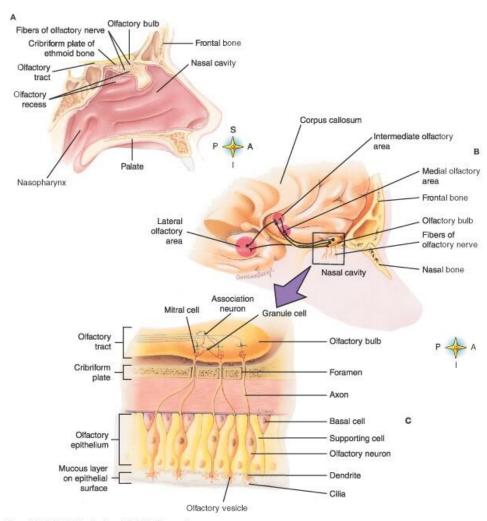
- Nasal cavity
- Oral Cavity
- Pharynx
 - Nasopharynx
 - Oropharynx
 - Laryngopharynx
- Larynx (Above the vocal cords)

Nasal Cavity

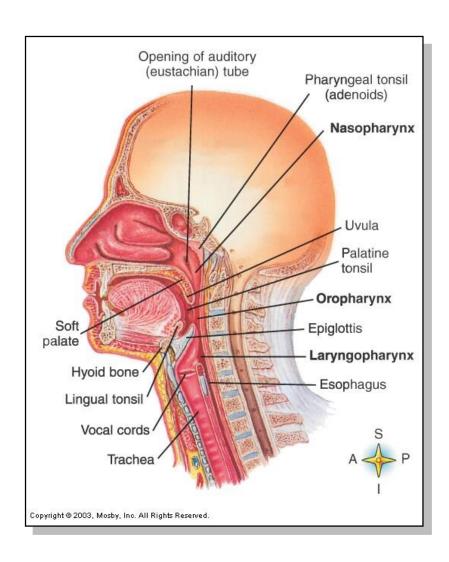
- Anatomy
 - Anterior (External) Nares
 - Nasal Septum
 - Vestibule
 - Turbinates (Conchae)
 - Inferior, Middle and Superior
 - Internal (Posterior) Nares

Function

- Nasal Mucosa
 - Ciliated columnar epithelium
 - Rich in goblet cells
- Rich in vasculature
 - Heat air as it enters the system
 - Cilia trap foreign materials
 - Goblet cells "package" for excretion
- Roof of nose (above superior turbinate)
 - Olfactory epithelium


Paranasal Sinuses

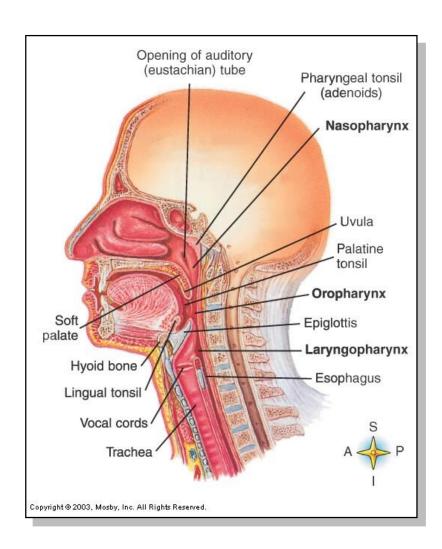
- Air containing spaces in the bones of the face that open and drain into the nasal cavity
 - Four pairs named for the bone they occupy
 - Frontal
 - Maxillary
 - Ethmoid
 - Sphenoid
 - Lined with respiratory mucosa
- Help trap particulates and moisten air as it enters the system
- Provide resonating chambers for speech
- Lighten the weight of the bones


Olfactory

- Air redirected by middle and superior turbinates are examined by the olfactory sense
- Looks for chemically irritating substances as a defense
- Gives us our sense of smell

Oral Cavity

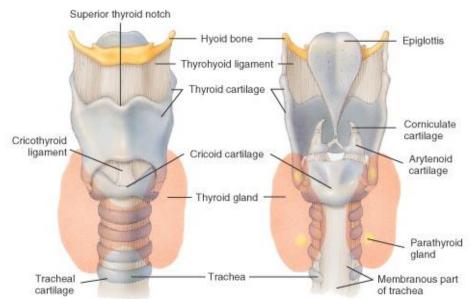
Anatomy

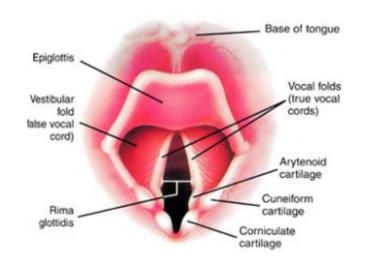

- Entrance of nutrients and liquid
 - Lips
 - Teeth
 - Tongue
 - Hard Palate
 - Soft Palate
 - Uvula

Function

- Acts as a secondary respiratory tract if nasal cavity blocked
- Direct food and liquid down towards the esophagus

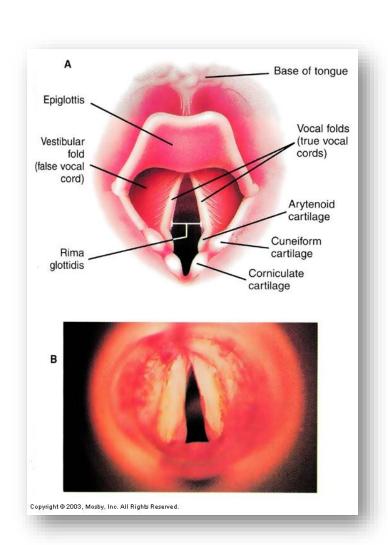
- Extends from the base of the skull to the esophagus
- Divided into 3 sections:
 - Nasopharynx
 - Pharyngeal tonsils (Adenoids if enlarged)
 - Does not collapse
 - Oropharynx
 - Palatine tonsils (at the fauces)
 - Lingual tonsils (base of the tongue)
 - Laryngopharynx
- Muscular with a mucous membrane
- Ciliated




- Larynx (Below the vocal cords)
- Trachea
- Bronchi
- Alveoli

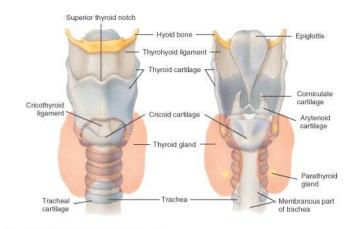
Larynx

- Comprised of 9 Cartilages
 - Thyroid Cartilage
 - Cricoid Cartilage
 - Epiglottis
 - Corniculate (X 2)
 - Cuneiform (X 2)
 - Arytenoid (X 2)
- Extends from the root of the tongue to the trachea
- Lined with ciliated mucous membrane
- This membrane forms two pairs of folds



Larynx

- Upper pair
 - Vestibular fold (False Vocal Cords)
 - Play no part in pronunciation
- Lower pair
 - Vocal Folds (True Vocal Cords)

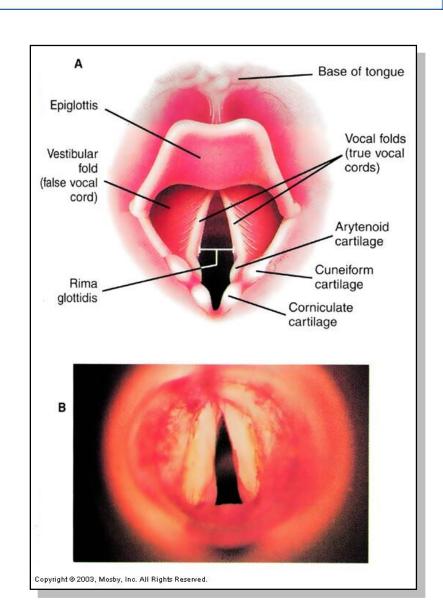


Muscular tissue

- Intrinsic
 - Origin and insertion are within the larynx
 - Muscles between arytenoid cartilage and epiglottis cause closure of the glottic opening during swallowing
 - Movement of the FVC and TVC for speech

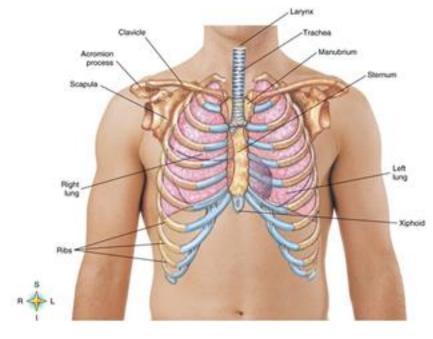
Extrinsic

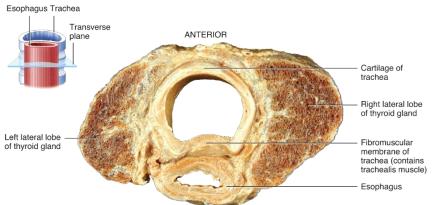
- Attached to the larynx and an external point (hyoid)
- Will move the larynx as a unit



Copyright @ 2003, Mosby, Inc. All Rights Reserved.

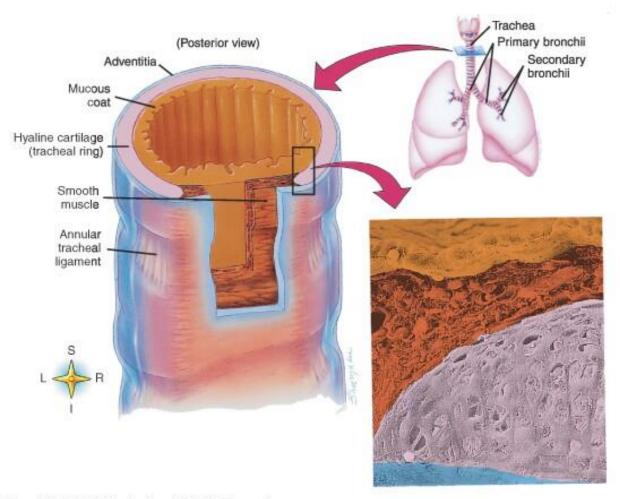
Larynx


- Function
 - Continues with removal of particulate
 - Continues with warming of air
 - "Voice Box"



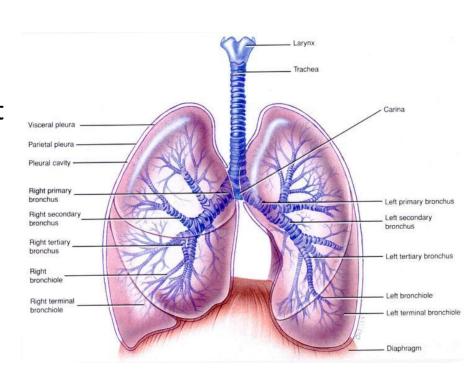
Trachea

- Approx. 12 cm long
 - Extends from the larynx to the primary bronchi
 - Is approx. 2.5 cm in diameter
- C-Shaped cartilage
- Has ciliated epithelium cells

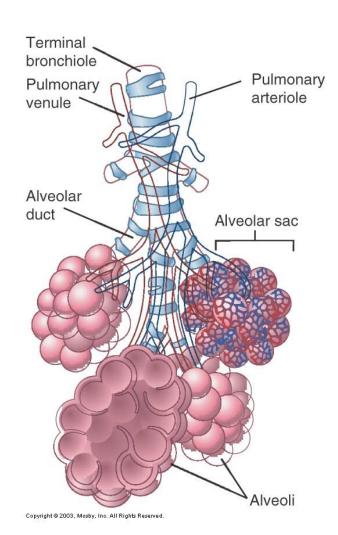


Superior view of transverse section of thyroid gland, trachea, and esophagus

Trachea

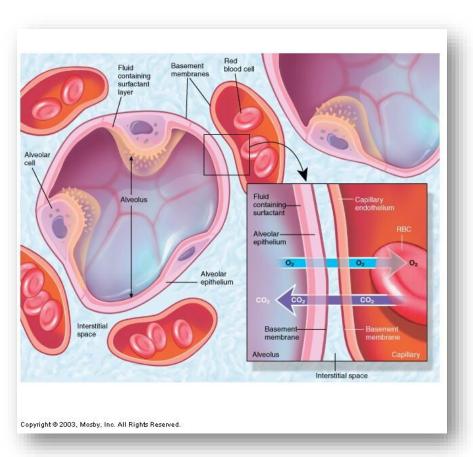


Copyright @ 2003, Mosby, Inc. All Rights Reserved.

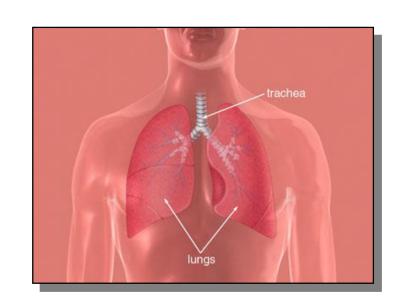

Bronchi

- Anatomy
 - Carina
 - Ciliated membranes
 - Primary bronchi (Right and left mainstem)
 - Still C-shaped
 - Secondary bronchi (complete rings)
 - Tertiary bronchi (complete rings)
 - Bronchioles (no cartilage, muscular)
- Function
 - Distribution of air to the alveoli

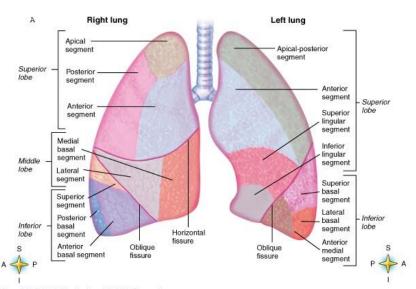
Alveoli


Anatomy

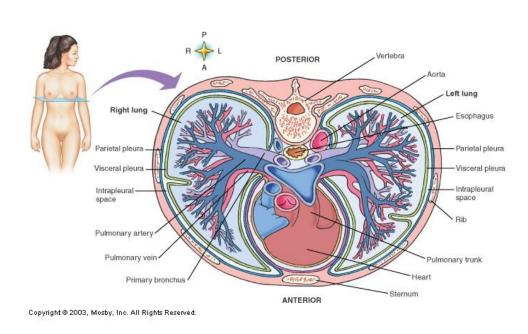
- Alveolar ducts
- Alveoli
 - Capillary abundant on outer surface
- Surfactant
 - Lipid derivative that helps reduce surface tension
 - Produced by Type II Alveolar cells
 - Prevents collapse of the lung
- Single layer of epithelial tissue (respiratory membrane)
- Function
 - Location of gas exchange



- Respiratory Membrane
- Surfactant
 - Reduce surface tension


- Cone shaped
- Base
 - rests on the diaphragm
- Apex
- Costal surface
 - Lies against the rib cage
- Only point of attachment is the hilum
- Right and Left lungs are separated by the mediastinum

Right


- 3 lobes
 - URL, MRL, LRL (superior, middle and inferior)
- Divided by oblique and horizontal fissures
- Left
 - 2 lobes (cardiac notch)
 - ULL, LLL (superior and inferior)
 - Divided by oblique fissure

Copyright @ 2003, Mosby, Inc. All Rights Reserved.

- Each lung covered with pleura
 - Visceral
 - firmly attached to the surface of the lung
 - Parietal
 - lines the wall of the thorax
- Potential space in between is called the pleural cavity
- This contains a serous fluid that acts as a lubricant to reduce friction

Respiratory Anatomy

PHYSIOLOGY

Gas exchange:

- The body needs a continuous supply of O₂ for the metabolic processes that sustain life
- Works with the circulatory system to provide O_2 and to remove the waste products of metabolism (CO_2)

Regulation:

- Helps in regulating the pH of the blood
- Body temperature

- Respiration results in the exchange of O₂ and CO₂ between the atmosphere and the tissue
- Ventilation is stimulated by nerve impulses

- External respiration
 - Exchange of gases between the lungs and the blood
- Internal respiration
 - Exchange of gases between the blood and the tissues
- Cellular respiration
 - Cells utilize the O₂ for metabolism

 Defined as the movement of air through the conducting passages between the atmosphere and the lungs

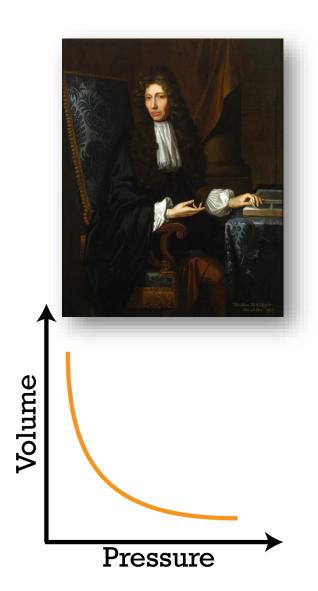
- Conducting Passages
 - Upper Respiratory Tract
 - Nose, pharynx
 - Lower Respiratory Tract
 - Larynx, Trachea, bronchial tree and lungs

Terms used to describe the process of breathing

– Inspiration: moves air into the system

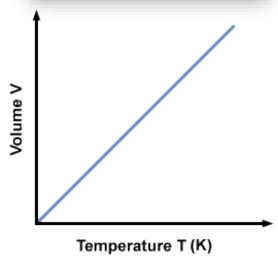
Expiration: moves air out of the system

- Air moves based on the same principles as fluid
 - Movement down a pressure gradient

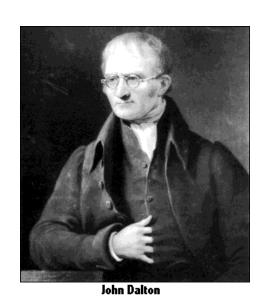


- In order to appreciate the function of the respiratory system you should be familiar with the basic gas laws:
 - Boyle's Law
 - Charles' Law
 - Dalton's Law
 - Henry's Law

- The volume of a gas is inversely proportional to its pressure.
 - If the pressure is increased the volume will decrease
 - May be written in the form of an expression: $P_1V_1=P_2V_2$
- Pressures in ventilation
 - Atmospheric pressure
 - Intra-alveolar (intrapulmonary) pressure
 - Intra-pleural pressure



Charles' Law

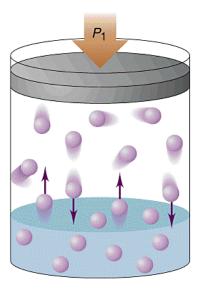

- Volume is directly proportional to the temperature as long as the pressure is constant
 - So as air is heat within the respiratory system it will expand

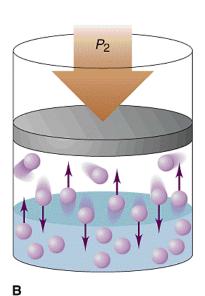
Dalton's Law of Partial Pressures

 Dalton surmises that the total partial pressure of a gas (if its mixture) is the sum of all the partial pressures of its components

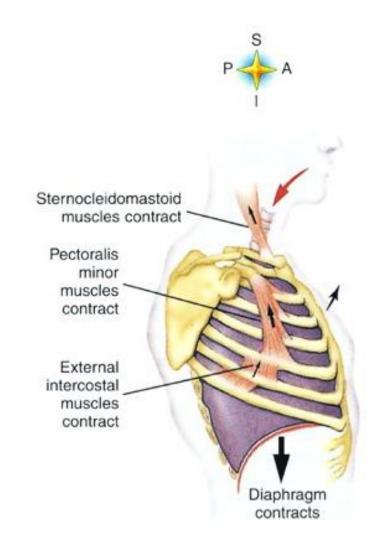
$$p_{\text{Total}} = p_{\text{gas1}} + p_{\text{gas2}} + p_{\text{gas3}} + p_{\text{gas4}}$$

$$p(\text{air}) = p(\text{N}_2) + p(\text{O}_2) + p(\text{CO}_2) + ...$$


$$760 \text{ mmHg} = 592.8 \text{ mmHg} + 159.6 \text{ mmHg} + 0.2 \text{ mmHg} + ...$$


$$100 \% = 76 \% + 21 \% + 0.03 \% + ...$$

- The concentration of a gas in a solution depends on the partial pressure of the gas and its' solubility (as long as the temperature stays constant)
 - The higher the solubility, the more gas will dissolve
 - The higher the pressure the more gas will dissolve

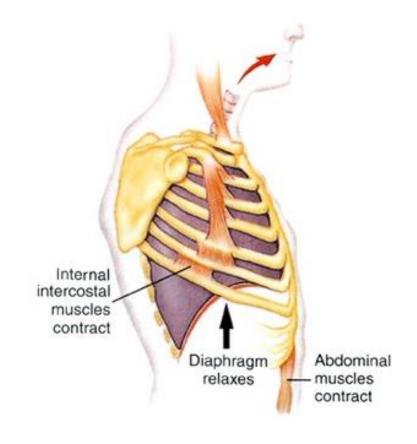


Mechanics of Ventilation

- Quiet Inspiration
 - Diaphragm
 - External intercostals
- Forceful Inspiration
 - Sternocleidomastoid
 - Pectoralis minor
 - Serratus anterior (scapula)

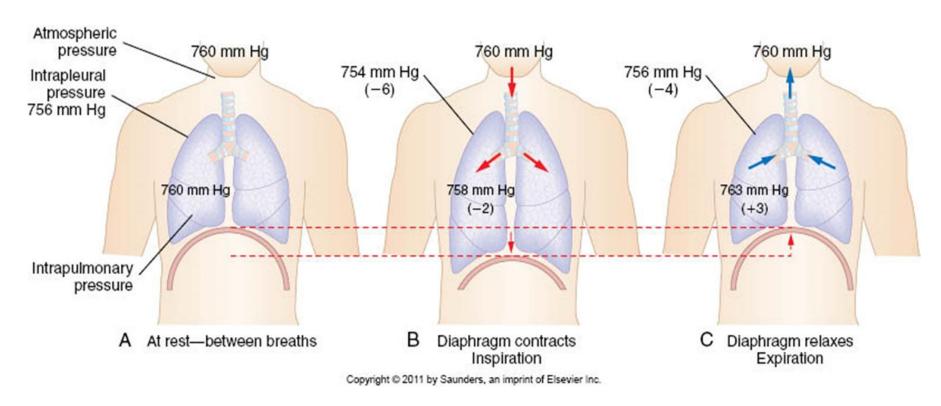
• At rest:

- Atmospheric pressure = 760 mmHg
- Intrapleural pressure = 756 mmHg
- Intrapulmonary pressure = 760 mmHg
 - This pressure difference helps create surface tension with surfactant to overcome "the collapse tendency of the lungs"


- As thoracic cavity increases in size
 - Cohesion between parietal and visceral layers allows the lungs to be "pulled"
 - This change in cavity size changes the pressures of the cavity
 - Atmospheric pressure = 760 mmHg
 - Intrapleural pressure = 754 mmHg (-6)
 - Intrapulmonary pressure = 758 mmHg (-2)

Mechanics of Ventilation

- Quiet Expiration (Passive)
 - Relaxation of inspiration muscles
 - Diaphragm
 - Internal intercostals
- Forceful Expiration
 - Abdominal Muscles



- As thoracic cavity decreases in size
 - This change in cavity size changes the pressures of the cavity
 - Atmospheric pressure = 760 mmHg
 - Intrapleural pressure = 756 mmHg (-4)
 - Intrapulmonary pressure = 763 mmHg (+3)

Pressures in Pulmonary Ventilation

- (A) Illustrates the lungs at rest
- In inspiration (B), the intrapulmonary pressure is less than atmospheric pressure and air flows into the lungs.
- In expiration (C), intrapulmonary pressure is greater than atmospheric pressure and air flows out of the lungs. Intrapleural pressure is always less than either intrapulmonary or atmospheric pressure.

Mechanics of Ventilation

Elastic Recoil:

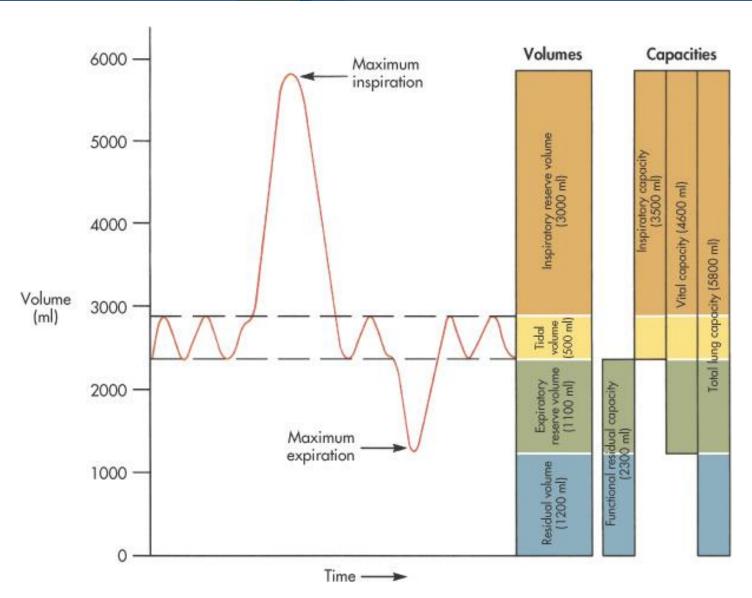
- The tendency for the lungs and thorax to return to their pre-inspiration state
- Disease states may require forceful expirations even at rest

Compliance:

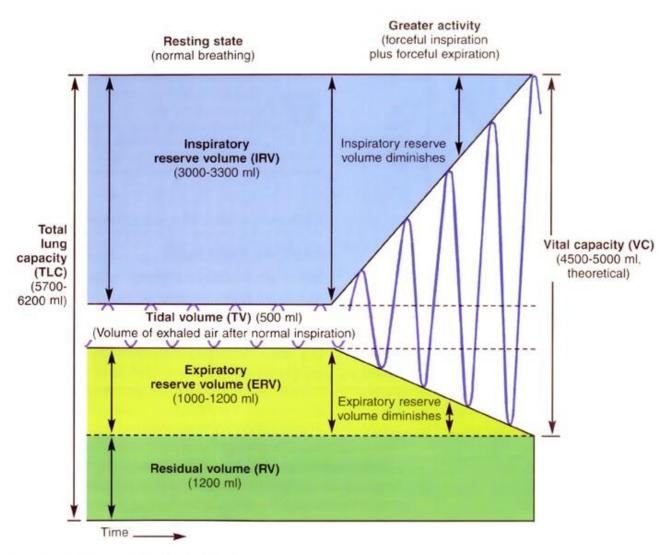
- The ability for the lungs and thorax to stretch is essential for respiration
- Disease states may make inspiration more difficult

• Resistance:

Opposition to air flow from narrow air passages, or airway blockages



- Four respiratory volumes
 - Tidal volume (TV)
 - Amount of air exhaled after an inspiration
 - Inspiratory reserve volume (IRV)
 - Max amount that can be forcefully inhaled after TV
 - Expiratory reserve volume (ERV)
 - Max amount that can be forcefully exhaled after TV
 - Residual volume (RV)
 - Amount remaining after max expiration



- Respiratory capacities
 - Vital Capacity (VC)
 - Max amount of air that can be exhaled after max inspiration (TV+IRV+ERV)
 - Inspiratory Capacity (IC)
 - Max amount of air inhaled (TV+IRV)
 - Functional residual capacity (FRC)
 - Amount remaining after tidal expiration (RV+ERV)
 - Total Lung capacity (TLC)
 - Total amount of air the lung can hold (RV+TV+IRV+ERV)
 - Minute Volume
 - Total volume of inspired air per respiration times the respiratory rate

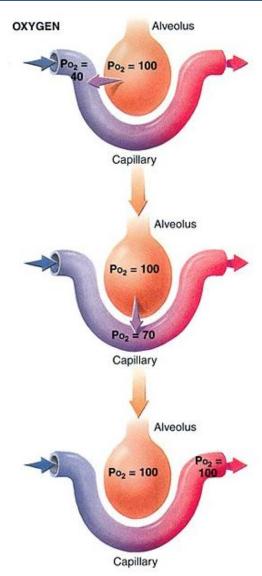
Alveolar Ventilation

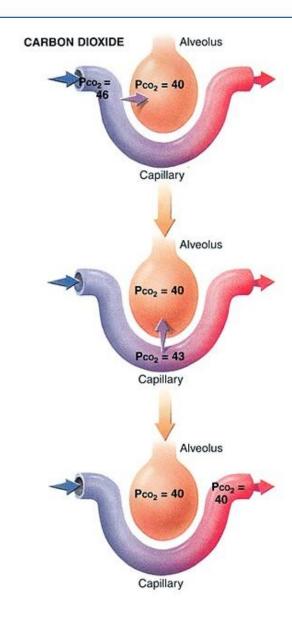
- The volume of inspired air that reaches the alveoli
- Only air that takes part in exchange of gases

- Volume of air which is inhaled, but does not take part in gas exchange either because it remains in the conducting airways or in alveoli that are poorly perfused
 - Anatomic Dead Space
 - Portion of the airways which conduct gas to the alveoli
 - Alveolar Dead Space
 - Sum of the volumes of those alveoli that are ventilated but not perfused
 - Physiological Dead Space
 - Anatomical Dead Space + Alveolar Dead Space

Exchange of Gases in the Lungs

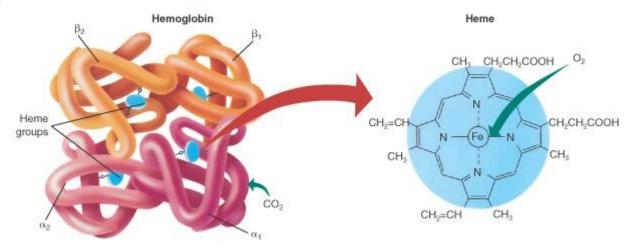
- Gas exchange occurs between the lungs and the blood at the capillary level
- Gases move in both directions through the respiratory membrane
- Occurs due to pressure differentials in the system




Exchange of Gases in the Lungs

- Amount of oxygen diffusion depends on many factors:
 - O₂ pressure gradient between alveoli and blood (Altitudes)
 - Total functional surface area of the membrane (Pneumothorax)
 - Minute volume (Morphine)
 - Alveolar ventilation (COPD)

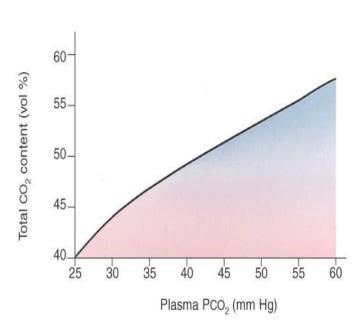
Exchange of Gases in the Lungs


Transport of Gases

- Blood transports O₂ and CO₂ as either solutes or combined with other chemicals
- As they enter the blood stream they are dissolved in plasma
- Since plasma can only hold small amounts of gas they combine chemically with another molecule
 - Hemoglobin, plasma proteins or water
- As they combine with the molecules, plasma concentrations decrease providing more space for in the plasma

Transport of Gases

- Remember that hemoglobin:
 - Contain four polypeptide chains
 - Each chain has a heme group (contains iron)
 - O₂ can combine with the Fe
 - CO₂ can be absorbed in the chains

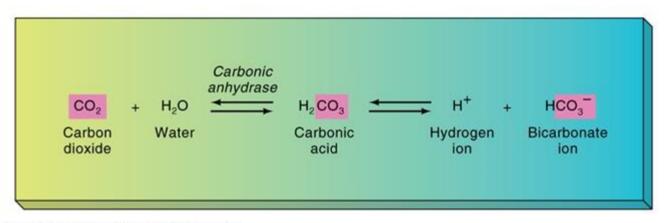


Transport of gases

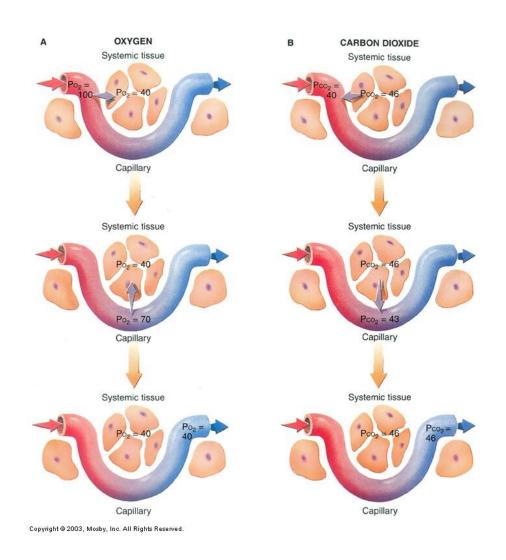
- Oxygen transport
 - 3% stays in plasma
 - Remainder combines with hemoglobin in the RBC
 - Loading (In the lungs)
 - Hb + $O_2 \rightarrow HbO_2$
 - Unloading (In the tissues)
 - $\text{HbO}_2 \rightarrow \text{Hb} + \text{O}_2$
 - Temperature, O₂ & CO₂ levels and pH affect loading and unloading

Transport of gases

Carbon Dioxide transport


- Dissolved in plasma (7 10 %)
- Combine with amine (NH2)
 groups which combine with
 hemoglobin in the RBC (20 23%)

Copyright © 2003, Mosby, Inc. All Rights Reserved.


Transport of gases

- Carbon Dioxide transport
 - As part of bicarbonate ions (70%)
 - Dissolved in H₂0 (Blood plasma) to make carbonic acid, sped up by carbonic anhydrase enzyme and dissociates into bicarb and hydrogen

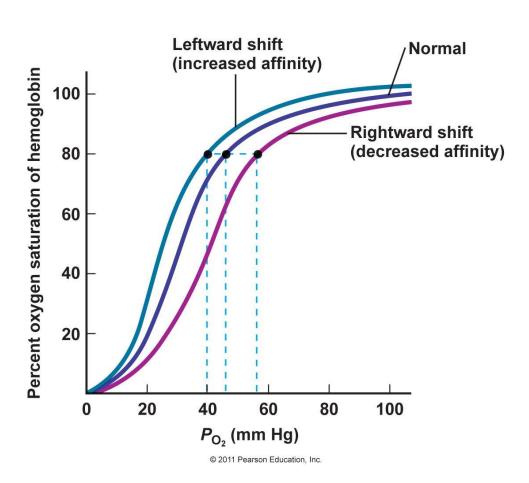

Systemic Gas Exchange

- A non-linear graph showing the relationship between pO₂ of plasma with the Hb Saturation (%)
- Is the difference between hypoxia and hypoxemia
 - Many factors can influence how rapidly hemoglobin can associate or dissociate with oxygen in the system
 - An increasing blood pO₂ accelerates association of Hb with O₂
 - A decreasing blood pO₂ accelerates dissociation of Hb with O₂

Influencing factors:

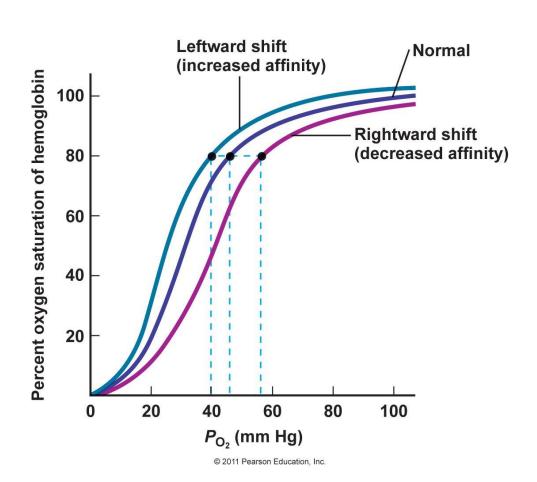
- Acidity
 - Hb affinity for oxygen is lower and oxygen dissociates easily from the Hb
 - To acidic will result in no affinity of Hb to oxygen
- Partial Pressure of CO₂
 - As pCO₂ increases hemoglobin releases O₂ more readily
 - The increase in pCO₂ may result in a large amount of bicarbonate and hydrogen ions in the blood, thus decreasing the pH

- Influencing factors:
 - Temperature
 - 2, 3 biphosphoglycerate (2, 3 BPG)
 - Formed in the RBC's when glucose is broken down during glycolysis
 - BPG decreases the Hb affinity
 - When BPG combines with Hb, oxygen is easily dissociated and more oxygen can be delivered to the tissues
 - Certain hormones can increase BPG content such as epi, nor-epi and testosterone
 - High altitudes can affect BPG as well



Right Shift (Bohr Effect)

- An decrease in oxygen's affinity to Hb
 - Weaker bonds (more dissociation)
 - Results in a right shift in the curve


– Causes:

- Decreased pH (acidosis)
- Increased CO₂
- Increased temperature
- Increased BPG
 - COPD, CHF...

- Left Shift (Haldane Effect)
 - An increase in oxygen's affinity to Hb
 - Stronger bonds (less dissociation)
 - Results in a left shift in the curve
 - Causes:
 - Increased pH (alkalosis)
 - Decreased CO₂
 - Decreased temperature
 - Decreased BPG
 - Septic shock

Clinical Use

- The oxyhemoglobin dissociation curve is important clinically in understanding the relationship of SaO₂ to the pO₂ particularly as it relates to disease.
- In healthy patients the slope of the curve increases significantly from the mid-sixties (PaO₂) downward
 - indicates that decreases in PaO₂ in this region will have dramatic effects on SaO₂
- A good grasp on the influence of factors that can affect the curve or the affinity of hemoglobin to oxygen.
 - Remember the powerful effects of carbon monoxide in trying to explain hypoxemia in the presence of a normal PaO₂ and SaO₂.
- Understanding the elements of the dissociation curve, such as the basis of oxygen saturation, can also help explain clinical problems.
 - a patient that presents with SOB in the presence of adequate ventilation and SaO₂ with a hemoglobin deficiency

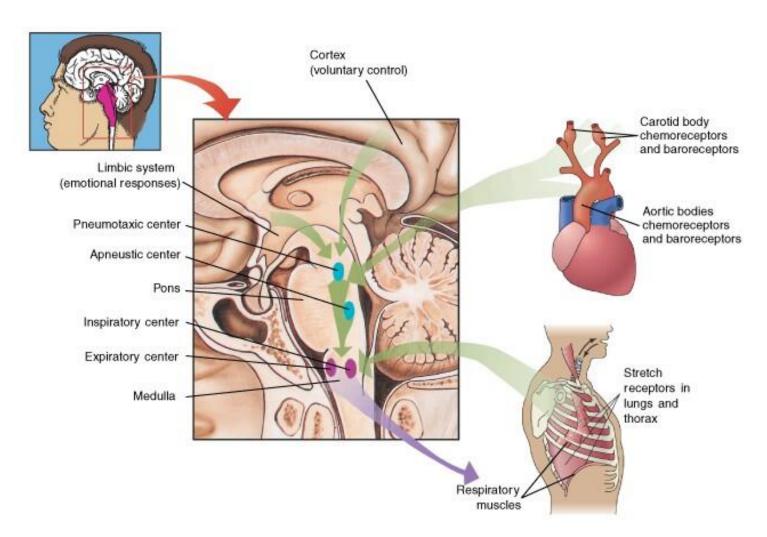
Health Edu Santé

- Medulla and pons form the Respiratory center in brainstem
 - Inspiratory phase send signals down phrenic nerve to the diaphragm
 - Also to intercostal nerves for deep breath
 - Expiration occurs when the impulse stop

Respiratory Control Centers

Medulla

- The main integrators that control the nerves that affect respiration are located in the brainstem (respiratory centers)
- Medullary Rhythmicity Area
 - Consists of:
 - Inspiratory center (primary respiratory pacemaker)
 - Expiratory center
 - » Typically is only active for forceful expiration



Respiratory Control Centers

Pons

- Apneustic center
 - Stimulates the inspiratory center to increase length and depth of inspiration
- Pneumotaxic center
 - Inhibits both the apneustic center and the inspiratory center
 - Helps prevent overinflation of the lungs

Control Systems

- A complex control system exists to control
 - pH
 - pCO₂
 - $-pO_2$
- pO₂ must be controlled to ensure all tissues receive O₂
- pCO₂ must be controlled to keep pH near 7.4
- pH must be controlled to keep
 - enzymes functioning normally
 - membrane and other proteins functioning normally
 - biological processes functioning that depend on pH
- Minute Volume
 - Is altered to keep pO₂ high and pCO₂ near 40 mmHg
 - Caused by changes in respiratory rate and tidal volume

Control Systems

- Control Systems in regulating pH and pO₂
 - Mechanical Control System
 - Chemically Mediated Control System
 - Nonspecific Respiratory Drives

 Each of these alter the Respiratory centers to alter breathing as required

Control Systems

- Mechanical Control
 - Hering-Breuer Reflex
 - Large lung inflations cause
 - Deflation
 - Decrease in rate of breathing
 - Large deflations of the lung cause
 - Inspiration
 - Increased rate of breathing
- Receptors for mechanical control
 - Stretch receptors
 - Airway smooth muscle in Trachea, Bronchi and Bronchioles
 - Sensory information is carried to medulla via Vagus nerve
 - Efferent information is carried by Motor neurons to respiratory muscles
 - Phrenic (innervates the diaphragm)
 - External & Internal intercostal motor neurons

Chemical

- Chemoreceptors
 - Are sensitive to changes in CO₂ and pH
 - Central: medulla oblongata
 - » Recognizes slight changes in pCO₂
 - Peripheral: carotid bodies and aorta
 - » Recognize large changes in pCO₂
 - Increase in pCO₂ results in faster breathing with greater volume
 - Decrease in pCO₂ results in inhibition of chemoreceptors and slows breathing rates
 - May note a change in pO₂ if the levels drop below 70 mmHg as a emergency respiratory control mechanism
 - ↓ pH will result in ↑ minute volume

- Stretch Receptors of the lungs
 - Initiates the Hering-Breuer Reflex to prevent overinflation
- Cerebral cortex
 - Stimulus from higher brain centers
 - Involuntary or voluntary
 - Catecholamine releases
- Temperature
 - Increase in temp increases respiratory rate
 - Sudden cold stimuli may cause reflex apnea

- Pain
 - Sudden painful stimulation will cause reflex apnea
 - Continued pain will increase rate and depth of respirations

- Stimulation of pharynx or larynx
 - by chemicals or touch may cause a temporary apnea
 - A protective measure against aspiration

Nonrespiratory Air Movements

- Reflexes, voluntary and emotions
 - Coughing
 - Stimulated by foreign material in trachea or bronchi
 - Epiglottis and glottis close and the expiratory muscles contract to force them open and a gush of air up
 - Sneezing
 - Contaminants in the nasal cavity
 - Sighing
 - Hiccup
 - Spasmodic contraction of the diaphragm followed by a sudden closure of the glottis
 - Crying
 - Laughing
 - Yawning