CARDIOVASCULAR ANATOMY

Module: 12

Primary Care Paramedicine

Section: 02

The Cardiovascular System

- Contains the organs for circulation
- Includes:
 - Heart
 - Vessels
 - Veins
 - Arteries
 - Capillaries
 - Blood
- Is a closed system

Two muscular pumps

 Provides the necessary force to circulate the blood to the tissues

Adult heart pumps 5 L/min on average

Located in the mediastinum:

Posterior to the sternum

Rests on diaphragm, 2/3 left of midline

 The apex is directed inferiorly, anteriorly and to the left (5th intercostal space)

 The base has several large vessels attached and extends to the 2nd intercostal space

On average 9 - 12 cm long

- 2 layer sac that covers the heart
 - Fibrous pericardium
 - Outer layer formed of tough white fibrous connective tissue
 - Attached to the large vessels at the base of the heart, diaphragm, sternum and vertebrae
 - Serous pericardium
 - Fibrous layer lined with serous membrane called parietal pericardium
 - Inner layer is visceral pericardium (epicardium)
 - Potential space between them is the pericardial cavity
 - Contains pericardial fluid (10 15 ml) secreted by the serous membranes

Heart Wall

- 3 distinct layers
 - Epicardium
 - Myocardium
 - Endocardium

- Outer layer firmly anchored to the underlying muscle
- Thin protective layer
- Vessels that nourish the heart are located here

- Thick middle layer formed of special cardiac tissue
 - Have the following characteristics
 - Electrical Cells
 - Automaticity
 - » The ability to spontaneously generate and discharge an electrical impulse
 - Excitability
 - » The ability of the cell to respond to an electrical impulse
 - Conductivity
 - » The ability to transmit an electrical impulse from one cell to the next
 - Myocardial Cells
 - Contractility
 - » The ability of the cell to shorten and lengthen its fibers
 - Extensibility
 - » The ability of the cell to stretch
 - Can not summate contractions (tetanus) so do not fatigue

Electrical Cells

- Automaticity
 - The ability to spontaneously generate and discharge an electrical impulse
- Excitability
 - The ability of the cell to respond to an electrical impulse
- Conductivity
 - The ability to transmit an electrical impulse from one cell to the next

Myocardial Cells

- Contractility
 - The ability of the cell to shorten and lengthen its fibers
- Extensibility
 - The ability of the cell to stretch

- Branching cells are connected by intercalated discs
- Each disc contains many gap junctions allowing for large amounts of cardiac muscle to be coupled into a single unit (syncytium)
- This allows for action potential to be passed along a large area of the heart wall
- Wrap around the heart in a spiral fashion

Intercalated Discs

- Inner smooth endothelium layer
- Also forms the valves of the heart
- Is continuous with the lining of the blood vessels
- Contains muscular projections called Trabeculae
- Help regulate flow of blood through chambers

Chambers

- Four chambers
 - Right and left atria
 - Thin walled chambers
 - Receives blood form the veins
 - Right and left ventricles
 - Thick walled chambers
 - Sends blood through the arteries
- Separated from right to left by the septum

- Receives blood from the veins
- Myocardial layer is thin
- Both atria have small extensions called auricles
- Are divided by Rt to Lt by interatrial septum
 - A thin region, the fossa ovalis, of the interatrial septum represents the foramen ovale that existed during the fetal stage

Right Atrium

 Receives deoxygenated blood from the inferior and superior vena cava as well as the coronary sinus

Left Atrium

 Receives oxygenated blood from the lungs through the four pulmonary veins

- Receives blood from the atria above
- Thicker myocardial layers (left is thickest)
- Are divided by interventricular septum
- Also have papillary muscles projecting from the wall

Right Ventricle

- Receives deoxygenated blood from the right atrium and pumps it to the lungs
- Left Ventricle
 - Receives oxygenated blood from the left atrium and pumps it to the body

Mechanical devices that permit the flow of blood

Atrioventricular valves (cuspid valves)

Semilunar valves

Atrioventricular Valves

- Between the atrium and the ventricles
 - Tricuspid valve (right)
 - Bicuspid (mitral) valve (left)
- Free edges are attached to papillary muscles by chordae tendineae
- Forced open as blood returns to atria, and closed when the ventricles contract

Semilunar Valves

- Located at the bases of the large vessels attached to the ventricles (aorta and pulmonary artery)
- Half-moon flaps grown from the linings of the large vessels
- Open as pressure increases with contraction of the ventricles and forced closed as blood flows back into the "cups"

- Fibrous structure
- Connective rings serving as support for the heart valves and point of attachment for myocardium
- Also serves as an electrical barrier

- Right Pump (Pulmonary Circulation)
 - Blood returns to the RA from systemic circulation
 - Passes the tricuspid valve and enters the RV
 - RV sends blood to the lung to be oxygenated through the pulmonary
 SL valves into the pulmonary arteries
- Left Pump (Systemic Circulation)
 - Returns from lungs through pulmonary veins into LA
 - Passes Mitral valve into the LV
 - Passes the aortic SL valve into the ascending aorta to the body

Flow of Blood

Pulmonary Circulation (Right Pump)

- Blood returns to the RA from systemic circulation
- Passes the tricuspid valve and enters the RV
- RV sends blood to the lung to be oxygenated through the pulmonary SL valves into the pulmonary arteries

Systemic Circulation (Left Pump)

- Returns from lungs through pulmonary veins into LA
- Passes Mitral valve into the LV
- Passes the aortic SL valve into the ascending aorta to the body

- Two main coronary arteries branch from the ascending aorta
- Lies behind the flaps of the SL valves
- Blood flow is greatest when the heart is at rest, compression of the ventricles reduces flow
- Arteries have numerous branches and anastomoses to allow for collateral blood flow (collateral circulation)

- Right Coronary Artery
 - Continues to the Right AV sulcus and to the posterior portion of the heart
 - Supplies most of the right ventricle

- Left Coronary Artery
 - Extends left for 2 cm then divides
 - Anterior interventricular (descending) artery (Aka LAD)
 - Circumflex artery (which continues around to the posterior portion of the heart)

- Both ventricles receive blood from branches of the Rt and Lt coronary arteries
- Atrium receive blood from corresponding artery
- Coronary artery dominance

Coronary Artery	Cardiac Muscle	Conduction System
RCA	RV-lateral/posterior wall LV-inferior wall	SA node (45%)* AV node (90%)* Bundle of His Right Bundle
LAD	RV-anterior wall LV-septum/apex/ anterior wall	Left Bundle
LCx	LV-lateral/posterior wall	Left Bundle SA node (55%)* AV node (10%)*

^{*} Represents the percentage of the population in which this feature occurs.

- After blood has passed through capillaries returns through the coronary veins
- They lie next to the coronary arteries
- Most drain into the coronary sinus into the right atrium
 - Some in the RV drain directly into the RA

Conduction System

- Composed of
 - Sinoatrial node
 - Atrioventricular node
 - Atrioventricular bundle
 - Purkinje fibers
- Specialized cardiac cells
 - Differ in function where they conduct as well as of conduct for contraction

Table 30-4	Pacemaker Intrinsic Rates	
Pacemaker	Rate (beats/min)	
SA node	60 to 100	
AV junction	40 to 60	
Purkinje fibres	20 to 40	
Abbreviations: AV, atric © Jones & Bartlett Learning.	oventricular; SA, sinoatrial.	

- Consists of hundreds of cells near the opening of the Superior VC
- Intrinsic rate of 60 100 bpm
- Establishes basic rhythm, known as the pacemaker
- Impulses rapidly transfer to the atrium and cause them to contract and to the AV Node

- Also known as the Node of Tawara
- Located on the floor of the Right Atrium along the Interatrial septum
- Intrinsic value of 40 60 bpm
- Conducts impulse slower so gives a slight delay which allows for the atria to finish contracting

AV Bundle and Purkinje Fibers

- A bundle of specialized cardiac fibers extending from the AV node
- Extends by two branches down either side of the Interventricular septum
- Impulse moves rapidly through the AV bundle to the right and left bundle branches
- The bundle branches extend along the walls of the ventricles and papillary muscles
- Branch off to form the conducting myofibers (purkinje fibers)

- A graphically representation of the heart's electrical activity
 - P Wave
 - QRS Complex
 - T Wave
 - U Wave

Nerve Supply

- Sympathetic
 - Contained in the middle, superior and inferior cardiac nerves
- Parasympathetic
 - Vagus nerve
- Terminate in the
 - SA node
 - AV node
 - Myocardium

- A complete pumping cycle (heartbeat)
- Combination of systolic and diastolic phases (0.8 seconds)
- The five steps of a full cycle
 - Atrial systole
 - Isovolumetric ventricular contraction
 - Ejection
 - Isovolumetric ventricular relaxation
 - Passive ventricular filling

- AV valves are open
- Ventricles are relaxed
- Depolarization of atrial myocardium completes the emptying of the atria (atrial kick – accounts for 20% of blood volume)
 - Atrial systole (0.1 seconds)
- SL valves are closed
- Coincides with the P wave

Isovolumetric Ventricular Contraction

- AV Valves close
- Period between ventricular systole and the opening of the SL valves
- Volume remains constant as the pressure increases
 - Increase is from contraction of ventricular myocardium
- Coincides with the R wave
- Appearance of the first heart beat sound

- SL valves open once the interventricular pressure exceeds the pulmonary artery and aorta pressures
 - Rapid ejection
 - Initial short phase
 - Marked by increase in pressures and an increase in aortic blood flow
 - Reduced ejection
 - Longer phase
 - Marked by decrease in ventricular emptying
 - Residual volume
 - Quantity of blood remaining in the ventricle at the end of the ejection phase

Isovolumetric Ventricular Relaxation

- Atria relax and begin refilling (atrial diastole)
- Ventricular diastole begins in this phase
- Identified by the closure of the SL valves and opening of the AV valves
 - Note pressure in the atria must exceed the ventricles for the valves to open
- Interventricular pressure decreases while volume stays the same
- Second heart sound heard
- Atrial diastole is 0.7 seconds
- Ventricular systole is 0.3 seconds

Passive Ventricular Filling

- Atria have been filling
- Interatrial volume and pressure have exceeded interventricular pressure
- Forces AV valves open
- Relaxation of the ventricles helps open AV valves with the help of papillary muscles and chordae tendineae
- Initial abrupt filling of the ventricles (0.1 seconds)
- Followed by a continuous flow (diastasis)
 - 0.2 seconds
 - Marked by an increase in ventricular volume and pressure
- Total ventricular diastole is 0.5 seconds

- Sounds made during the cardiac cycle
- Usually described as "lubb-dubb"
- First (S1)
 - Caused by contraction of the ventricles and closure of the AV valves
 - Longer and lower then second
- Second (S2)
 - Caused by closure of the SL valves
 - Shorter and sharper then the first

- Abnormalities in heart sounds may indicate problems with the functioning of the valves (difficult to hear if HR > 100)
 - S3 (ventricular gallop)
 - S4 (atrial gallop)
- For auscultation use landmarks in picture with patient in the supine position λ
 - A-Aortic
 - P-Pulmonic
 - T-Tricuspid
 - M-Mitral

Principles of circulation

- Fluid must move from an area of high pressure to an area of low pressure (down the pressure gradient)
 - Fluid will not move if the pressures are equal
 - Fluid moves from the left ventricle to the right atrium due to the blood pressure gradient

Mean Arterial Pressure

$$MAP = \frac{(2 \ X \ DBP) + SBP}{3}$$
 $MAP = DBP + \frac{Pulse \ Pressure}{3}$
= $\frac{(2 \ X \ 80) + 120}{3}$ = $80 + \frac{(120 - 80)}{3}$
= 93.3 = 93.3

- The amount of systolic discharge (ml/beat)
- Factors that affect SV
 - Mechanical (Starling's Law of the Heart)
 - Neural
 - Chemical (inotropic effects of dopamine and epinephrine)

Starling's Law of the Heart

- Pertains to the length of the myocardial fibers at the beginning of the ventricular contraction
- The longer the stretch the stronger their contraction
- Related to the amount of blood in the ventricles at the end of the ventricular diastolic phase (LVEDV)

Note:

 Too much blood may extend the fibers past their critical point and cause them to loose their elasticity

- The rate at which the heart beats (b/min)
- Influential Factors:
 - Ratio of sympathetic and parasympathetic impulse per minute
 - Parasympathetic
 - Vagus nerve
 - Inhibitory by releasing acetylcholine
 - Sympathetic
 - Cardiac nerve
 - Excitatory by releasing norepinephrine

Cardiac Pressoreflexes:

- Baroreceptors in the carotid arteries and aorta sense changes in pressure
- Carotid Sinus Reflex
 - Found at the base of the internal carotid
 - Baroreceptors attach to Herring's nerve (an extension of the glossopharyngeal (IX) cranial nerve) send signal to cardiac center in the medulla oblongata
 - If pressure is increased then vagus stimulation occurs slowing the HR down

Aortic Reflex

- Found in the aortic arch
- Through the aortic nerve into the vagus nerve (X) to the cardiac center
- An increase in pressure will again stimulate a drop in HR

- Other reflexes
 - Emotions
 - Exercise
 - Hormones
 - Temperature
 - Pain
 - Visceral structure stimulation may result in such a slowing of HR that fainting may occur

Carotid Sinus Reflex:

- Baroreceptors in the carotid arteries and aorta sense changes in pressure
- Send impulse to cardiac center in the medulla
- Oppose changes in pressure by adjusting the heart rate

- The amount of blood returning to the heart during the diastolic phase
 - During diastole blood flows from the atria to the vents
 - Volume of each ventricle (EDV) is approximately 120 130 ml
 - Vents empty during systole so volume decreases (ESV) approximately 50 – 60 ml
 - Therefore
 - PL= EDV ESV = 120 ml 50 ml = 70 ml

The amount of systolic discharge per minute (ml/min)

$$CO = HR X SV$$

$$= 72 \frac{b}{min} X 70 \frac{ml}{b}$$

$$=5040 \; \frac{ml}{min}$$

Cardiac Output

Cardiac Output

BP = CO X PVR (peripheral vascular resistance)

- PVR
 - The resistance of blood flow by the force of friction between the blood and walls of the vessels
 - Viscosity of the blood
 - Changes in RBC volume or proteins
 - Diameter of the arterioles (over ½)
 - Decrease in diameter will limit the flow of blood and in turn leave larger amounts of blood in the arteries thus increasing the PVR

Vasomotor Control Mechanism

- Changes in blood distribution and/or pressure may stimulate the vasomotor center
- When stimulated it sends sympathetic impulses to the muscles surrounding the vessels (venules, arterioles and the blood reservoir) to constrict

Vasomotor Pressoreflexes

- Increase
 - Stimulates baroreceptors (carotid and aortic)
 - Stimulates the cardiac center
 - Results in parasympathetic stimulation of the heart and inhibition of the vasoconstrictor center
 - ↓ HR and venous pooling
- Decrease
 - Baroreceptors stimulate cardiac center
 - Sympathetic response to the vasoconstrictor center

- Vasomotor Chemoreflexes
 - Found in the aorta and carotid bodies
 - Sensitive to hypercarbia
 - Less sensitive to hypoxia
 - Decreased arterial pH
 - Stimulation causes the vasoconstrictor center to be activated

Medullary Ischemic Reflex

- This mechanism recognizes a large drop in the cerebral blood flow
- This drop in BP causes ischemia to the medulla (resulting in hypercapnia)
- Triggers an autonomic response of the cardiac and vasomotor centers of the medulla
- This response causes sympathetic response to the heart and vessels (causing ↑ HR, ↑ force of contraction, vasoconstriction)
- Also note that if the oxygen supply decreases to a very low point this mechanism can not be stimulated

- Vasomotor Control by Higher Brain Centers
 - Cerebral cortex and hypothalamus are capable of stimulating the vasomotor center
 - Seen with fear, anger and other emotions

- The pressure in the aorta against which the left ventricle must pump blood (Result of PVR)
- The greater the afterload, the harder it is for the ventricle to eject blood into the aorta, reducing the stroke volume
- ↑ PVR = ↓ SV
 - Due to ↑ aortic pressure and the ventricles now must overcome this pressure first
- ↓ PVR = ↑ SV
 - If sufficient enough volume is present

Refers to heart rate

Refers to contractile strength

Refers to rate of nerve impulse conduction (AV node)

- The amount of blood returned to the heart
- Affect by
 - Venous pumps
 - Total blood volume

