RHYTHM INTERPRETATION
PART C: LETHAL ARRHYTHMIAS

Primary Care Paramedicine

Module: 12

Section: 04c

- Ventricular Tachycardia
- Ventricular Fibrillation
- Asystole

Ventricular Tachycardia

Rate > 100 bpm

Rhythm Regular

P Waves None

PRI None

QRS > 0.12 s (> 120 ms), wide

Torsade de Pointes

Ventricular Fibrillation

Rate No organized rhythm

Rhythm No organized rhythm

P Waves None

PRI None

QRS None

Ventricular Fibrillation

Etiology

Rhythm in which the entire heart is no longer contracting

- Quivering without organized contraction
- Random depolarization of many cells

Clinical Significance

Lethal dysrhythmia with no organized electrical pattern, therefore no mechanical squeeze and no cardiac output and

Follow cardiac arrest guidelines

Ireatmen

Asystole

Rate	No electrical activity	
Rhythm	No electrical activity	
P Waves	Absent	
PRI	Absent	mun = 1
QRS	Absent	

Asystole

Etiology

- Flatline
- Entire heart is no longer contracting.
- Many cells have no energy for contraction.
- Generally a confirmation of death

Clinical Significance

- Asystole = cardiac arrest
- Poor prognosis for resuscitation

Follow cardiac arrest guidelines

Treatment

Pulseless Electrical Activity

- This is more a protocol or treatment plan than it is an actual rhythm
- Characteristics
 - Electrical impulses are present, but with no accompanying mechanical contractions of the heart
 - Treat the patient, not the monitor
 - If pulseless initiate cardiac arrest protocols

 When attempting to determine underling cause of cardiac arrest remember the H's and T's

- Hypovolemia
- Hypoxia
- Hydrogen Ion (Acidosis)
- Hypo/hyperkalemia
- Hypoglycemia
- Hypothermia

S

- Toxins
- Tamponade (cardiac)
- Tension Pneumothorax
- Thrombosis (coronary or pulmonary)
- Trauma

ECG

OTHER RHYTHMS

- As a result of underlying dysrhythmias, some patients have a surgically implanted cardiac pacemaker
- Two main types:
 - Single chamber: only one pacing lead is placed in the R atrium or R ventricle
 - Dual chamber: two pacing leads, one in the R atrium and R ventricle
- For both types, the device can either:
 - monitor the patient's underlying rhythm and take over pacing when needed = demand pacemaker
 - or automatically pace the patient at a set rate = fixed pacemaker

Pacemaker Rhythm

Artificial Pacemaker Rhythms

- Obvious on the heart monitor
- Many types exist.
 - Ventricular pacemakers are attached to the ventricles only.
 - Demand pacemakers

Artificial Pacemaker Rhythms

Artificial pacemaker rhythms

- Hyperkalemia
 - Can produce tall ("peaked") T waves
 - Suspect in patients with a history of renal failure
 - Differentiate from Hyperacute T waves
 - Hyperacute should only be in leads affected by hypoxia whereas Hyperkalemic, peaked T waves would be global
 - Best seen in precordial leads

Profound, severe hyperkalemia has the appearance of a sine wave

Serum $K^+ = 9.2 \text{ mEq/L}$

- Hypokalemia
 - Can produce ECG changes that include:
 - P waves with decreased amplitude
 - Increase PRI
 - Flattened or inverted T waves
 - U waves (best observed in precordial leads)

Hypothermia

- Can produce ECG changes that include:
 - Osborn wave ("J" wave)
 - T wave inversion
 - Prolonged PRI and QRS

Lose electrodes

Biotelemetry
(Poor reception of signal)

- Minimize possible artifact by:
 - Stop patient movement
 - Have patient stop talking
 - Stop ambulance is necessary to capture accurate tracing
 - Support limbs
 - Cover with blankets to reduce shivering
 - Move electrode to another location on limb to avoid interference by muscle tissue
 - Replace electrodes if not adhering to patient
 - Shave patient's hair if not allowing skin contact
 - Troubleshoot worn out/damage cables