

Musculoskeletal Illness and Injury

MUSCLE

- Second in frequency only to soft-tissue trauma
- Usually result from significant direct or transmitted blunt kinetic forces
- Painful and debilitating but rarely threaten life

Prevention Strategies

- Optimal way to reduce musculoskeletal injuries
 - Application of modern vehicle and highway designs
 - Workplace safety standards
 - Protective sports equipment
 - Good safety practices and public education

Injury to Muscle

- Can occur due to:
 - Overexertion where fibers are broken
 - With trauma muscles can be bruised, crushed,
 cut, or even torn even without a break in the skin.
- Injured muscles tend to be:
 - Swollen, tender and painful, weak

Types of Muscular Injuries

- Muscle fatigue
- Muscle cramp
- Muscle spasm
- Muscle strain

Muscular Injuries

Muscle fatigue

- Occurs as muscle reach limits of performance
- Cell environment becomes hypoxic
- Strength diminishes, further exertion becomes painful

Muscle cramp

- Muscle consume oxygen and energy sources
- Circulation cannot clear metabolic wastes
- Irritation, muscle contraction (spasm)

Muscular Injuries

- Muscle spasm
 - Affected muscle goes into contraction

• Clonic: intermittent

• Tonic: constant

Usually subsides with restoration of circulation

Muscular Injuries

Strain

- Muscle overstretched by forces stronger than muscle
- Muscles stretch
- Ligaments may stretch or tear
- Pain that increases with use

- Diseases of muscles connected to bones
- Inherited genetically MD
- Also by
 - Endocrine disorders
 - Inflammatory disorders (polymyositis)
 - Metabolic disorders

Musculoskeletal Illness

- Myopathies
 - Dystrophies
 - Myotonia
 - Congenital
 - Inflammatory
 - Metabolic
 - Polymyositis
 - Chronic inflammation of many muscles
 - Rhabdomyolysis
 - Damaged skeletal muscle tissue breaks down rapidly
 - Myoglobin released into the bloodstream, are harmful to the kidneys and may lead to kidney failure

Muscular Dystrophy

- Symmetrical weakening and atrophy of the muscles
- No change in sensation
- Duchenne's is most common, affects children and adolescents, and has short life span

- Myotonic MD affects young adults and lasts twenty years +
- MD's are hereditary
- Slow but steady deterioration

Musculoskeletal Illness and Injury

SKELETAL

Joint Injuries

- Sprain
- Subluxation
- Dislocation

- Tearing of a joint capsule's connective tissue
 - Grade I
 - Minor and incomplete tear of muscle fibers
 - Mild painful but minimal swelling
 - Joint stable
 - Grade II
 - Partial tear
 - Moderate to severe pain and swelling
 - Joint intact but unstable
 - Grade III
 - Complete tear
 - Severe pain and spasm
 - Loss of function/Joint unstable

small tears

tear

Grade II

Grade III

- Partial displacement of a bone end from its position within a joint capsule
- Significantly reduces joint's integrity
- Caused by:
 - Hyperflexion
 - Hyperextension
 - Rotation beyond normal
 - Extreme forces

- Complete displacement of a bone end from its normal joint position
- Danger of entrapping, compressing or tearing blood vessels
- Caused when joint moves beyond its normal range of motion
 - Usually with great force

Knee dislocation

a. Presentation of a knee dislocation

FIGURE 22-1 Knee dislocation.

b. X-ray of the dislocation

Fracture

- An involved fracture that ultimately interrupts the continuity of bone
- May be by direct or indirect
- Complications:
 - Nerve damage
 - Vascular damage
 - Associated injuries to muscles, tendons, ligaments, etc

Bone Injury

- Open fracture
- Closed fracture
- Hairline fracture
- Impacted fracture
- Transverse fracture
- Oblique fracture

- Comminuted
- Spiral fracture
- Fatigue fracture
- Greenstick fracture
- Epiphyseal fracture

Types of Fractures

Open

- Bone is displaced and moves through muscle, sub Q tissue and the skin
- Bone does not have to be visible to be classified as open

Closed

Bone is not displaced enough to cause disruption in the skin

Types of Fractures

Hairline

 Small crack in bone that does not disrupt integrity of the bone

Fatigue

- Associated with prolonged or repeated stress
- Bone weakens and fractures without force

Open vs closed

Simple vs Comminuted

Types of Fractures

Pediatric Considerations

- Contain greater proportion of cartilage than adult bones
- Flexible nature of bone
 - Susceptible to greenstick fracture
- Bone grows from epiphyseal plate
 - More prone to epiphyseal fractures

Geriatric Considerations

- Aging causes changes to musculoskeletal system
 - Gradual decrease in bone mass and collagen structure
 - More brittle bones that heal more slowly
- Osteoporosis
 - Accelerated degeneration of bone tissue due to loss of essential minerals
 - Becomes most serious after menopause

Pathological Fractures

- Disease processes that affect bone development or maintenance
 - Tumours and other diseases
 - Radiation treatment
- Fracture not likely to heal well if at all

General Considerations

- Limited soft tissue surrounding joints
 - Compromised nerve and blood supply distal
- Blood vessels enter bone through diaphysis
 - Compromised blood supply to distal bone end
- Reduced stability
 - Damage to soft tissue, vascular and nerve involvement
- Muscle spasm
 - May cause bone ends to over-ride each other

Bone Repair Cycle

- Hemorrhagic clot
 - Fracture tears periosteum
 - Blood fills area and congeals

Bone Repair Cycle

- Bony callus formation
 - Osteocytes from bone ends multiply and produce osteoblasts
 - Lay down salt crystals with collagen clot fibres
 - Two ends join and form knob of cancellous bone

Bone Repair Cycle

Remodelling

- Continued deposition of salts/collage strengthens and stabilizes bone
- Dissolved in low stress areas, added to high stress areas
- Bone remodelled
- If bone experiences interruption in healing, site may never return to normal

Inflammatory and Degenerative Conditions

• Bursitis

 Acute or chronic inflammation of the small synovial sacs

Tendonitis

 Accumulation of small tears in the tendon that have not healed properly over time

 Inflammation of a tendon and/or the protective sheath

Inflammatory and Degenerative Conditions

- Osteomyelitis
- Osteoarthritis
- Rheumatoid arthritis
- Gout

Osteomyelitis

- Acute or chronic bone infection
- Usually caused by bacteria or fungus
 - Original site of infection is elsewhere in the body,
 and spreads to the bone by the blood

- Long bones usually in children
- Vertebrae, pelvis are most common in adults
- Pus is produced within the bone, which may result in an abscess
 - Then deprives the bone of its blood supply
- Chronic osteomyelitis results when bone tissue dies as a result of the lost blood supply
 - Chronic infection can persist intermittently for years

Osteomyelitis

- Risk factors
 - Recent trauma
 - Diabetes
 - Hemodialysis
 - IV drug abuse
 - Spleenectomy

Osteomyelitis

- Signs and Symptoms
 - Pain in the bone
 - Local swelling, redness, and warmth
 - Fever
 - Nausea
 - Malaise
 - Drainage of pus through the skin (in chronic osteomyelitis)
- Additional symptoms
 - Excessive sweating
 - Chills
 - Low back pain
 - Swelling of the ankles, feet, and legs

Osteomyelitis

- Treatment:
 - Eliminate the infection
 - Antibiotics
 - Surgery may be needed to remove dead bone tissue

Inflammatory and Degenerative Conditions

- Osteoarthritis
 - Inflammation of a joint from wearing down of the articular cartilage
- Rheumatoid arthritis
 - Chronic disease that causes deterioration of the peripheral joint capsule
 - Extreme cases causes flexion contractures
- Gout
 - Inflammation in joints and connective tissue produced by accumulation or uric acid crystals

Osteoarthritis

- A group of mechanical abnormalities involving degradation of joints
- A variety of causes
 - hereditary, developmental, metabolic, and mechanical
- Most common form
- Causes pain, swelling and reduced motion in your joints
- Can occur in any joint, but usually it affects your hands, knees, hips or spine
- Breaks down the cartilage in your joints

Osteoarthritis

- Factors include
 - Being overweight
 - Getting older
 - Injuring a joint
- Therapies
 - Manage pain
 - Improve function
 - Exercise, weight control, rest, pain relief, alternative therapies and surgery

Rheumatoid Arthritis

- Chronic systemic inflammatory disease that causes deterioration of the peripheral synovial joint capsules (may affect tissues and organs)
 - Inflammatory response of the capsule around the joints secondary to swelling (hyperplasia) of synovial cells, excess synovial fluid, and the development of fibrous tissue (pannus) in the synovium
 - Disease process often leads to the destruction of articular cartilage and ankylosis (fusion) of the joints
- Can also produce diffuse inflammation in the lungs, pleura, pericardium, sclera and also nodular lesions.
- Considered a systemic autoimmune disease
- Extreme cases causes flexion contractures

Osteoarthritis vs Rheumatoid Arthritis

- Inflammation in joints and connective tissue produced by accumulation or uric acid crystals
- Arises directly from elevated levels of uric acid within the blood
- Determined by the balance between the amount being produced and the amount being excreted
- Uric acid is produced when purines are broken down by enzymes in the liver
 - Generated via the breakdown of cells in normal cellular turnover
 - Ingested in purine-rich foods (e.g. seafood, beer)
- Most people with gout tend to be underexcretors

- Signs and Symptoms
 - Excruciating and sudden pain, swelling, redness, warmness and stiffness in the joint
 - Low-grade fever may also be present
 - Two sources of pain
 - Crystals inside the joint
 - Inflammation of the tissues around the joint
 - Gout usually attacks the big toe (approximately 75% of first attacks) however it can also affect other joints such as the ankle, heel, instep, knee, wrist, elbow, fingers, and spine

- Patients with longstanding hyperuricemia can have uric acid crystal deposits called tophi in other tissues
- Uric acid stones can form as one kind of kidney stone in some occasions

Secondary Gout

- Gout can also develop as co-morbidity of other diseases:
 - Polycythaemia
 - Leukemia
 - Intake of cytotoxics
 - Obesity
 - Diabetes
 - Hypertension
 - Renal disorders
 - Hemolytic anemia
 - Diuretics (particularly thiazide diuretics)

Stages of Gout

Four distinct stages:

- Asymptomatic
 - Plasma uric acid level increases, but there are no symptoms
- Acute
 - Mild attacks usually go away quickly, whereas severe attacks can last days or even weeks
- Intercritical
 - Symptom-free interval that may last months or even years
- Chronic
 - Frequent and become polyarticular
 - Large tophi
 - Kidney damage or stones, HTN

Musculoskeletal Illness and Injury

ASSESSMENT AND TREATMENT

- Scene assessment
 - Look for indications of severity of trauma forces
 - Kinetic energy forces may also cause internal and spinal injuries
 - Don't let injuries be a distracter

 As you begin the assessment, examine the patient quickly for MSK injuries; but remember that they are not often life threatening.

Primary Assessment

- Classification of patients with musculoskeletal injuries:
 - Life and limb threatening injuries
 - Life-threatening and minor musculoskeletal injuries
 - Non-life-threatening but serious limb threatening injuries
 - Non-life-threatening and only isolated minor musculoskeletal injuries

Rapid Trauma Assessment

- 80% of patients with multi-system trauma have associated musculoskeletal trauma
- Look for specific fractures
 - Pelvis: up to 2 litres of blood loss
 - Femur: up to 1500 mL of blood loss

- Six Ps of evaluating a limb injury
 - Pain
 - Pallor
 - Paralysis
 - Paraesthesia
 - Pressure
 - Pulses

a. A fracture will often present with deformity.

FIGURE 22-5 Presentation of a forearm fracture.

b. An x-ray of the fracture.

- Palpation
 - Instability
 - Deformity
 - Crepitus
 - Muscle tone
 - Temperature
- Evaluate distal sensation, circulation and mobility

FIGURE 22-6 Evaluate the distal extremity for pulse, temperature, colour, sensation, and capillary refill.

Early Indicators of Compartment Syndrome

- Feelings of tension within limb
- Loss of distal sensation
 - Especially in webs of fingers and toes
- Complaints of pain
- Condition more severe than mechanism of injury would indicate
- Pain on passive extension of extremity
- Pulse deficit (late sign)

Injury Management

- Protect open wounds
- Proper positioning
- Immobilize the injury
- Monitor neurovascular function

Protecting Open Wounds

- Any open wound in close proximity to a fracture
 - Open fracture
- Cover with a sterile dressing
- Realignment/splinting may draw bone ends back into skin
 - Report to receiving physician

Positioning of the Limb

- When possible place injured limbs in position of function or a neutral position
 - Ensure patient comfort
 - Reduce chances of further injury
 - Encourage venous drainage
 - Stop realignment if there is any pain or resistance
- Do not attempt alignment of dislocations or serious injuries within 7 cm of a joint

FIGURE 22-7 Gently position the limb in the position of function, unless your attempts meet with resistance or a significant increase in pain or the injury is within 7 cm of a joint.

- Prevents further injury
- Above the joint above and below joint below
- Wrap from distal to proximal
- Reassess distal properties before, during and after immobilization

Splinting Devices

- Rigid splints
- Formable Splints
- Soft Splints
- Traction Splints
- Other Splinting Aids
 - Vacuum Splints
 - Air Sprints
 - Cravats or Velcro Splints

Splinting Devices

FIGURE 22-8 A variety of splints are available for musculoskeletal injuries.

Traction Splints

a. A bipolar frame traction splint

b. A unipolar frame traction splint

FIGURE 22-9 Traction splints.

FIGURE 22-10 Suction the air out of a vacuum splint until the device is rigid. Reassess pulse, motor function, and sensation in the extremity after application.

- Assess neurovascular status
 - Correct compromise with traction/ realignment
- Use gentle traction to realign limb
 - Immobilize proximal limb and apply traction to distal
- Splint with appropriate device
- Secure limb
- Constant reassessment of distal neurovascular status

- Assess neurovascular status
 - If compromised, consider moving limb to reestablish it
 - Rapid transport
- Immobilize joint in position found
- Reduction
 - Return displaced bone to normal position

Muscle and Connective Tissue Care

- Rest the extremity
- Ice for the first 48 hours
- Compress with elastic bandage
- Elevate the extremity

- Pelvic ring fractures are serious lifethreatening injuries
 - Hemorrhage
 - Fat emboli
- Significant kinetic forces
- Stabilize fracture
 - Wrap, scoop stretcher
- Hemodynamic support

- Usually the result of violent forces
- Severe pain
 - May result in muscle spasms
 - Cause bone ends to over-ride
 - Traction splint
- Proximal fractures
 - Differentiate from fractured hip

- Align limb
- Determine neurovascular status
- Apply traction splint
- Reassess patient
- Consider other injuries/transport

Tibia/Fibula Fractures

- Can occur separately or together
- Tibia is more commonly fractured
- If only fibula is broken, limb may be stable
- Generally air or rigid splints are most effective

FIGURE 22-12 Placement of long padded board splints laterally and medially can effectively splint tibia/fibula fractures.

Clavicle Fractures

- Most commonly fractured bone
- Usually the result of transmitted forces directed along the upper extremity
- Sling and swathe or figure eight bandage
- Monitor for risk of internal hemorrhage or respiratory compromise

Humerus Fractures

- Difficult to immobilize at proximal end
 - Bone buried deep within muscle and shoulder joint
- Sling and swathe tends to be most effective method

Radius/Ulna Fractures

- Most commonly fractured at distal end
 - Colles' fracture, silver fork deformity
- Major concern is neurovascular compromise
- Short padded rigid splint
 - Leave at least one digit exposed

FIGURE 22-13 A malleable splint can effectively splint fractures of the radius and/or ulna.

Hip Injuries

- Anterior dislocation
 - Head of femur palpable in inguinal area
 - Externally rotated
 - Minimally flexed
 - Abducted
 - Generally cannot be reduced prehospital
- Posterior dislocation
 - Most common
 - Knee flexed and foot rotated inwardly
 - Adducted
 - Reduce only if there is neurovascular compromise
- Otherwise secure with fracture board or scoop stretcher

May include:

- Fractures of femur, tibia or both
- Patellar dislocations
- Frank dislocations
- Immobilize in position found
 - Unless there is neurovascular compromise
- Patellar dislocations very painful
 - Occasionally reduced in prehospital setting (according to local protocol)

FIGURE 22-14 Angulated knee dislocations can be immobilized with two padded rigid splints.

Ankle and Foot Injuries

- Often produce distal lower limb that is grossly deformed
- Dislocations may be anterior, posterior or lateral
- Pillow splint is often most effective

FIGURE 22-15 A pillow splint can be used for injuries to the ankles and feet.

Shoulder Injuries

- Most commonly involve proximal humerus, lateral scapula and distal clavicle
- Immobilize in position found
- Reduction often occurs as a result of patient

body position

Shoulder Injuries

- Anterior dislocation
 - Humeral head displaced forward
- Posterior dislocation
 - Rotate arm internally, displaced away from chest
- Inferior dislocation
 - Humeral head displaced downward, arm locked over shoulder

- High incidence of neurovascular involvement
- Blood vessels running through elbow are held firmly in place
- Careful and minimal movement required to restore distal function
- Elbow dislocations should not be reduced in the prehospital setting

FIGURE 22-16 Use a corrugated board splint such as a Speedsplint to immobilize angulated fractures or dislocations of the elbow.

- At risk due to high activity levels and incompletely developed coordination
- Greenstick fracture
 - Stable but angulated limb
 - Do not realign
- Epiphyseal fracture
 - Endangers future growth
 - Treat as a potentially limb-threatening injury

- At risk due to high activity levels and incompletely developed coordination
- Greenstick fracture
 - Stable but angulated limb
 - Do not realign
- Epiphyseal fracture
 - Endangers future growth
 - Treat as a potentially limb-threatening injury

Athletic Injuries

- Higher incidence of injuries in contact sports
- Establish rapport with athletic trainers
 - Patient becomes part of EMS system
- RICE

- Used to relieve pain and pre-medicate
- Pain Management
 - Nitrous oxide
 - Morphine
 - Fentanyl
 - Meperidine (Demerol)
- Sedation
 - Diazepam
 - Midazolam