





- Skin is the first tissue in the body to experience trauma
  - Great significance at all stages of patient assessment
- Injuries infrequently threaten life
  - Highly capable of repairing itself





- Soft-tissue injuries are by far the most common form of trauma
- Open wounds
  - Most require simple care and suturing
  - Significant minority can lead to permanent damage to arteries, tendons, and nerves
  - ~6.5 % will become infected
- Closed wounds
  - Similar epidemiology
  - More common but most never reach the paramedic



## Types of Soft-Tissue Injury

- Closed Wounds
  - Contusions
    - Erythema
      - Redness caused by capillary congestion
    - Ecchymosis
      - Blood in the tissue
  - Hematomas
  - Crush Injuries

- Open Wounds
  - Abrasions
  - Skin tears
  - Lacerations
  - Incisions
  - Decubitus ulcer
  - Punctures
  - Injections
  - Bites
  - Impaled Objects
  - Avulsions
  - Amputations





 Blunt non-penetrating injuries that crush and damage small blood vessels

#### Erythema

 Reddening caused by blood being drawn to inflamed tissue

#### Ecchymosis

 Hemoglobin in the blood loses it oxygen, colouration becomes dark red then blue







- Bleeding within the tissue is significant enough to separate the tissue
- Blood pools in a pocket
  - Pronounced in a head injury
  - Less obvious in other body areas
  - Hematoma to the thigh can accumulate up to one litre of blood before it is noticeable





# Types of Open Soft-Tissue Injuries







- Most minor of injuries
- Scraping or abrading of skin
- Involves epidermis only
- Bleeding tends to be limited
- Risk of infection







- Common in elderly
- Effect of aging on skin
- Caused by sharing and/or friction forces
- Epidermis separates from dermis (partial)
- Epidermis and dermis separate from underlying structures (full thickness).







- Open wound that penetrates more deeply into dermis
- Involves smaller surface area but deeper structures
- Potential for significant bleeding





### Tension lines of the skin



- Tension lines may hold wound open or closed
  - Static (Langer's lines)
  - Dynamic





- Surgically smooth laceration
- Tends to bleed freely







- AKA pressure sore or bed sore
- Common in
  - Elderly
  - Disabled
  - Bed ridden
  - Fragile skin
- Often seen over boney areas
- Pressure over time causes skin to break down







 Small entrance wound with damage that extends into body interior







- High-pressure line bursts
- Injects fluid or other substance into skin and into subcutaneous tissue
- Body mechanisms unprepared to remove injected material
- Damage and infection may be severe







- Structural damage
- Local infection

Disease transmission







- Wound complication of a puncture or laceration
- Cause more damage if withdrawn





- Flap of skin not torn or cut completely from body
- Seriousness depends on
  - Area involved
  - Condition of circulation
  - Degree of contamination
- Degloving Injury
  - Injury tears skin off underlying muscle, connective tissue, blood vessels and bone







- Partial or complete severance of a digit or limb
- Bleeding may or may not be severe
- Occasionally can be surgically reattached







### **Amputations**

#### Patient

- Control bleeding by bulky dressing
- Consider tourniquet proximal to wound
- Do not delay transport to locate amputated part
- Have a second unit transport the part

#### Amputated Part

- Dry cooling and rapid transport
- Part in plastic bag (double bag)
- Immerse in cold water
- Avoid direct contact between tissue and cold water





- Blood loss may range from inconsequential to life threatening
- Nature of the injury more important than the size
  - Clean lacerations and amputations generally do not bleed as much



## Hemorrhage







- Complex process that may take up to several months to complete
- Phases of healing
  - Homeostasis wound plug
  - Inflammatory response Clean up
  - Proliferation Scab formation
  - Remodelling External closing
- Phases overlap and are physiologically intertwined





- Epithelialization
  - Epithelial cells migrate over surface of wound
- Neovascularization
  - New blood vessels generated to support healing
- Collagen synthesis
  - Main structural protein
  - Fibroblasts generate collagen to bind wound margins and strengthen healing



## Stages of Normal Cutaneous Wound Healing







- Body's ability to stop bleeding on its own
  - Vasculature
    - Constricts in response to local injury
  - Platelets
    - Begin clotting process and form platelet plug
  - Clotting cascade
    - Collagen and other structural proteins exposed
    - Release enzymes that begin clotting cascade













- Complex early stage of healing
- Damaged cells release chemotaxic factors
  - Attract phagocytes which engulf bacteria and debris

**Blood vessel** 

- Lymphocytes attack invading pathogens
- Histamine released from damaged cells
  - Vasodilation increases
     blood flow to and Fibroblast
     through area

Scab





- Growth of new tissue begins
- Granulation tissue comprised of collagen and extracellular matrix into network of blood vessels develop.
- Resurfacing of epithelial cells (Epithelialization)

Fibroblasts proliferating

Subcutaneous fat





- Occurs once the wound is closed
- Involves remodelling of collagen
- Collagen is realigned along tension lines
- Cellular activity decreases and number of blood vessels in wounded area regress and decrease
- Wound tensile strength increases





# Complications of Soft Tissue Injuries

- Infection
- Hemorrhage
- Compartment Syndrome
- Crush Syndrome
- Other Complications





- Most common complication of open wounds
  - 1:15 wounds seen in ED result in infection
  - Most serious complication after hemorrhage
- Usually caused by Staphylococcus or Streptococcus bacterial families
- Consequences
  - Delayed healing
  - Spread to adjacent tissues
  - Occasionally widespread systemic infection (sepsis)





#### • Pus:

- WBC's, cellular debris, & dead bacteria
- Lymphangitis:
  - Visible red streaks due to inflammation of lymph channels
- Fever & Malaise
  - Especially if the infection has become systemic





### Infection Risk Factors

- Host's health and pre-existing illnesses
- Medications (NSAID's)
- Wound type and location
- Associated contamination
- Treatment provided



## Infection Management

- Antibiotics & keep wound clean
  - Occasionally a minor incision and wound drainage
- Gangrene
  - Deep space infection of anaerobic bacteria (Clostridium perfringens)
  - Bacterial gas and odour
  - May lead to death
- Tetanus
  - Caused by bacterium Clostridium tetani
  - Toxins create widespread, painful muscle contractions
  - Lockjaw



## Other Wound Complications

- Impaired Hemostasis
  - Medications
  - Anticoagulants
- Re-Bleeding
  - Caused by movement of underlying structures
  - Partially healed wounds also at risk
- Delayed Healing
  - Result of poor peripheral blood flow
  - Diabetics, elderly, chronically ill and malnourished



#### Other Wound Complications



FIGURE 20-14 Musculoskeletal compartments segregated by fascia.

#### Compartment Syndrome

- Extremity injury causes significant edema and swelling in deep tissues
- Swollen tissue is encapsulated within tough inflexible fascia
- Blood flow compromised and ischemia ensues
- Muscle mass may die and use of extremity lost
- Lower extremities especially at risk



## Other Wound Complications

- Abnormal Scar Formation
  - Hypertrophic scar
  - Keloid scar
- Pressure Injuries
  - Similar to crush injury
  - May occur if patient is left on fracture board for too long







- Includes crush injury and crush syndrome
  - Crush injury
    - Deep injury to muscles, blood vessels and bones
    - Damage can be massive despite minimal signs on the skin
  - Crush syndrome
    - Refers to systemic effects
    - Accumulation and release of myoglobin, potassium, acids. etc







- Body tissues are subjected to severe compressive forces
  - Disrupts body's tissues
  - Skin may remain intact
  - Excellent growth medium for bacteria
- Hemorrhage may be difficult to control
  - Source of bleeding hard to identify
  - Large vessels may be damaged
  - Condition of limb may not support direct pressure





- Tamponading of distal tissue creates tissue hypoxia and acidosis
  - Muscle rigor
  - Buildup of byproducts of metabolism
  - "Wood-like" distal tissue
- Associated Injury
  - Related to mechanism
  - Fractures, open and closed injuries, etc



#### Crush Syndrome

- Occurs when body is entrapped for >4 hours
  - Crushed muscle tissue becomes necrotic
- Traumatic Rhabdomyolysis
  - Skeletal muscle degradation



- Release of toxins from break down of cells and anaerobic metabolism
  - Myoglobin
  - Phosphate
  - Potassium
  - Lactic Acid
  - Uric Acid



#### Crush Syndrome

- When tissue is released, toxins move rapidly into systemic circulation
  - Impacts Cardiac Function
  - Impacts Kidney Function



#### Crush Syndrome

- Often the result of prolonged entrapment
  - Anticipate problems
  - Can be identified before extrication takes place
- Scene safety
- Longer the entrapment, the greater the risk
- Once body freed, rush of metabolic wastes into circulation





- Fluid resuscitation
- Sodium bicarbonate
  - Combat systemic acidosis
- Calcium chloride
  - Counteract hyperkalemia
- Diuretics
  - Mannitol
  - Lasix



#### Compartment Syndrome

- Extremity injury causes significant edema and swelling in deep tissues
- Swollen tissue is encapsulated within tough inflexible fascia
- Blood flow compromised and ischemia ensues
- Muscle mass may die and use of extremity lost
- Lower extremities especially at risk





## Early Indicators of Compartment Syndrome

- Feelings of tension within limb
- Loss of distal sensation
  - Especially in webs of fingers and toes
- Complaints of pain
- Condition more severe than mechanism of injury would indicate
- Pain on passive extension of extremity
- Pulse deficit (late sign)



## **Compartment Syndrome**







- Care of underlying injury
- Splint and immobilize all suspected fractures
- Cold packs to severe contusions
  - Most effective prehospital management
  - Reduces edema
  - Prevents ischemia



#### Necrotizing Fasciitis

- Commonly known as flesh-eating disease or flesh-eating bacteria syndrome
- Rare infection of the deeper layers of skin and subcutaneous tissues, easily spreading across the fascial plane within the subcutaneous tissue.





#### Necrotizing Fasciitis

- Quickly progressing, having greater risk of developing in the immunocompromised
- Sudden onset
  - Type I Polymicrobial infection
  - Type II Monomicrobial infection
- Many types of bacteria can cause necrotizing fasciitis





# Assessment of Soft Tissue Injuries

- Scene assessment
  - No mechanism can affect the human body without first going through the skin
- Primary assessment
- Focused history and secondary
  - Significant MOI: rapid trauma survey
  - No significant MOI: focused trauma
- Detailed secondary







#### This will not kill your patient

This will







#### Assessment Techniques

- Inquiry
- Inspection
  - Observed in such a way that it can be described to physician later
- Palpation
- Ongoing assessment



#### Materials for Management

- Dressings
- Bandages
- Splints
- Ice Packs
- Tourniquets



- Material placed directly on wound to control bleeding and maintain cleanliness
  - Sterile/non-sterile dressings
  - Occlusive/non-occlusive
  - Adherent/non-adherent
  - Wet/dry
  - Hemostatic



#### Sterile Dressings





#### **Abdominal Pad**





#### Non Adherent





#### Non Sterile Dressings





### Occlusive Dressings





#### Wet Dressings





#### Hemostatic Dressings







- Material used to hold a dressing in place and to apply direct pressure
  - Roller
  - Gauze
  - Adhesive
  - Elastic
  - Triangular









#### Adhesive





### Elastic



















#### Ice Packs





## Tourniquets







- Late priority in care unless there is significant bleeding
- Objectives of bandaging
  - Control hemorrhage
  - Keep wound clean
  - Immobilize the wound site



### Hemorrhage Control

- Direct Pressure
  - Firm pressure for at least ten minutes
- Elevation
- Pressure Points
- Consider
  - Ice
  - Constricting Band
  - Tourniquet
- Consider a combination of techniques if bleeding is resistant
- TXA
- Immobilization





- Last option
- If pressure is insufficient
  - May halt venous return but not arterial flow
  - Increasing rate of blood loss
- Proper application
  - Entire limb distal becomes hypoxic, ischemic and potentially necrotic
- When circulation restored
  - Return of cellular waste products may cause profound systemic complications



### **Tourniquet Application**

a. Place a bulky dressing over the distal artery.



b. Apply a pressure exceeding the systolic pressure.



FIGURE 20-20 The steps of tourniquet application.

c. Secure the tourniquet, and monitor the wound site for continuing hemorrhage.





- Keep the wound as sterile as possible
  - Field conditions may necessitate keeping wound as clean as possible
- If wound is grossly contaminated consider cleansing
  - Irrigate with IV fluids



### Skin Closure

- Adhesive
  - Butter fly closures
  - Steri-Strips
  - Cyanoacrylate (Skin glue)
- Sutures
- Staples



### **Wound Closure**





### Skin Closure





### Skin Closure





 The aim to bring together the edges of a wound to facilitate healing











### Suture Removal

- When To Remove Stitches:
  - 5 days for face
  - 7 days for scalp
  - 7 10 days for other sites

- Assemble supplies:
  - Toothed forceps
  - Povidone-iodine swabs
  - Gauze pads
  - Small pointed scissors
     OR stitch cutter OR
     scalpel



### Suture Removal

#### Remove stitches:

- Swab area with povidoneiodine.
- Use forceps to grasp one end of stitch and lift off skin.
- Insert cutter under suture and cut away from skin or snip with scissors.
- Use forceps to pull thread out gently.







 Alternative to stitching with needle and thread.







## Negative Pressure Wound Therapy

- AKA Vacuum Assisted Closure
- Promotes healing through negative pressure
  - Increased blood flow
  - Enhanced granulation tissue formation
  - Reduction in bacterial colonization
- Indications
  - Burn patients
  - Chronic wounds
  - Slow healers









- Class: Anti-fibrinolytic
- MOA: A synthetic derivative of lysine that inhibits fibrinolysis by blocking the lysine binding sites on plasminogen







## Tranexamic Acid

- Indications:
  - Hemorrhagic shock not responding to IV fluids
  - Trauma with all of the following:
    - < 3 hours since time of injury</li>
    - Systolic BP < 90 mmHg OR HR > 110
    - Suspicion of hemorrhagic blood loss





#### Contraindications:

- < 16 y/o
- Hypersensitivity
- Active thrombotic disease (PE, DVT, CVA)
- Unable to initiate bolus within 3 hrs of injury
- Dose:
  - Adult
    - 1 g in 100 ml NS over 10 minutes
      - ED will add 1 g in 500 ml over 8 hrs







- Frequently overlooked
- Prevents movement and aggravation of wound
- Avoid elastic bandages
  - Tourniquet effect
- Monitor distal pulse, motor, and sensation



### Pain and Edema Control

- Cold packs
  - Reduces inflammation and local edema
- Moderate pressure over wound
- Consider analgesic if approved by medical control



### Scalp

- Rich supply of blood vessels
- Rarely account for shock
- Can be severe and difficult to control
- With skull fracture
  - Gentle digital pressure around the wound
  - Pressure on local arteries
- Without skull fracture
  - Direct pressure



#### Face

- Often involve heavy bleeding
- Aware of potential airway complications
- Blood is a gastric irritant
  - Be alert for nausea and vomiting

#### Ear or Mastoid

- Easily bandaged
- Cover and collect bleeding
- Fluid may contain ICF
- Halting flow may increase ICP



#### Neck

- Be aware of airway complications caused by bandages
- Sever wounds may require direct pressure to hospital
- Consider c-collar and dressing
- Occlusive dressing if lacerated vessel

#### Shoulder

Care to avoid pressure on anterior neck and trachea



#### Trunk

- Minor wounds may only require dressing
- Major wounds may require circumferential wrap
- May risk worsening injury unnecessarily
- Groin & Hip
  - Bandage by following contours of body
  - Movement can increase tightness of bandage



- Elbow and Knee
  - Circumferential wrap and splint
  - Splinting reduces movement
  - Position of function/half flexion half extension
- Hand and Finger
  - Bulky dressing
  - Position of function
- Ankle and Foot
  - Circumferential bandage



### Complications of Bandaging

- Developing ischemia
  - Pain
  - Pallor
  - Paraesthesia (tingling)
  - Pulselessness
  - Decreased capillary refill
- Assess
  - Distal pulse, sensation and mobility
  - Pressure beneath dressing
  - Match dressing size appropriate to injury



### Face and Neck Injuries

- Potential for airway obstruction or compromise
  - Blood and tissue debris in airway
  - Pooled secretions and tissue edema
- Aggressive suctioning and oxygenation
- Consider intubation
- If anatomical distortions prevent intubation
  - Needle or surgical cricothyroidotomy





- Superficial injury can be deep
  - Always suspect the worst due to underlying organs
- Alert for subtle early presentations of
  - Subcutaneous emphysema
  - Pneumothorax or hemothorax
  - Tension pneumothorax
- Consider
  - Occlusive dressing sealed on 3 sides
  - Needle decompression





- Injuries between the level of the 5th and 9th rib
  - Always suspect injury to ribs or thoracic organs
- Damage to hollow or solid organs from blunt or penetrating trauma
- Signs of symptoms of internal injury may be subtle and slow to progress
  - Supportive treatment unless aggressive care is warranted



### Wounds Requiring Transport

- Nerves
- Blood vessels
- Ligaments
- Tendons
- Muscles
- Significantly contaminated
- Impaled object
- Likely cosmetic injury



### Post Wound Care Assessment

- Patient & care giver should monitor wound daily for healing progress.
- Inspect the wound for signs & symptoms of infection following acronym S-H-A-R-P
  - Swelling, edema in tissue around wound.
  - Hot, surrounding tissue hot or noticeably warm.
  - Ache, pain, but slight tenderness is normal.
  - Red, surrounding tissue is red and inflamed.
  - Pus, or odour is not normal, but slight discharge of clear fluid (plasma) may be normal, scab may form.



## Soft-Tissue Treatment and Refer or Release

- Typically requires online medical control
- Evaluate and dress wound
- Inform the patient about:
  - Preventing infection
  - Follow-up care with a physician
  - Inquire about tetanus and inform of risks
- Document treatment, referral and teaching.