

- Produce eggs and sperm cells
- Transport and sustain them
- Nurture the developing offspring
- Hormone production

Male

- Essential
 - Testes(Gonads)
- Accessory
 - Epididymis
 - VasDeferens
 - Ducts
 - Urethra

- Diamond shaped area between thighs
- Divided into two distinct regions
 - Urogenital Triangle
 - Anal Triangle

Male gonads

- Begin development high in abdominal cavity (near kidneys) and drop into scrotum 2 months before birth or shortly after
- Scrotum maintains temp 3°C below body temp
- Testes will be pulled closer to the body if cold or aroused
- Location of sperm production (spermatogenesis)

- Suspended in scrotal sac by scrotal tissue and spermatic cords
- Blood vessels (vas afferens) enter through spermatic cord
- Tunica albuginea encases testicle and enters the gland producing lobules
 - Lobes contain seminiferous tubules and specialized interstitial cells (cells of Leydig)
 - Hormone Producing

- Tubules form plexus (rete testis)
- Efferent ductules drain rete testis into epididymis
- Sertoli Cells
 - Columnar shaped cells that extend from basement membrane to Lumen surface of seminiferous tubule
 - Tight junction between cells forms blood-testis barrier

- Spermatogenesis
 - Seminiferous tubules produce the sperm
- Hormone secretion
 - Testosterone from interstitial cells
 - Promotes "maleness"
 - Stimulates protein anabolism (growth of muscles/bones)
 - Stimulates kidneys to retain Na and Water while excreting K
 - High levels of Testosterone Inhibit anterior pituitary gland from secreting FSH and LH
 - High levels of gonadotropins stimulate testosterone secretion
 - Think of impotency in anabolic steroid users...

Spermatogenesis

Hormone Control

Spermatozoa

- Head (Nuclear region)
 - Contains 23 chromosomes
 - Covered by acrosome (contain splitting enzymes to help penetrate to the egg and into it
 - capacitation)
 - Break down cervical mucus
 - Break down outer covering of egg
- Mid-piece (Metabolic region)
 - Contains mitochondria to produce ATP
- Tail (Locomotor region)
 - Flagellum for motion

- Released from testes into epididymis for maturation
- Sperm production begins at puberty and continues through out life
- Production takes approximately 74 days
- Can live 48 hours in the female reproduction tract

- Single coiled tubule covered with a fibrous casing
- Can measure 20 feet in length
- Lies on top of and behind testis
 - Head
 - Attached to testis by efferent ductules
 - Body
 - Tail
 - Continuous with body and attaches to vas deferens

- Sperm passage
- Allows sperm cells to mature (spermatozoas will spend up to 3 weeks in this area)
- Introduces small amount seminal fluid (5%)

- Epididymis
- Ductus Deferens (vas deferens)
 - Continuous with the epididymis
 - Enlarge to form ampulla prior to prostate
 - Sperm are stored in the proximal portion of vas deferens and are propelled by peristaltic movement
- Ejaculatory duct
 - Vas deferens join at the ampulla to form
 - Pass through the prostate and empties into urethra

- Extends from bladder to external orifice
- Sphincter control keep urine out of urethra while sperm is being transported

Accessory Glands

Seminal vesicles

- Provides a viscous fluid (containing fructose) to the ejaculate – 60%
- Fructose provides energy for spermatozoa

Prostate

- Provide secretions to the ejaculate (milky alkalitic fluid) – 30%
- Bulburetheral Glands
 - During arousal secrete alkaline solution to neutralize urine – 5%
 - Also helps neutralize the vagina
 - Provides some lubrication

Structures

Copyright @ 2003, Mosby, Inc. All Rights Reserved.

Copyright @ 2003, Mosby, Inc. All Rights Reserved.

Female

- Essential
 - Ovaries (Gonads)
- Accessory
 - Ducts
 - Fallopian Tubes
 - Uterus
 - Vagina
 - Vulva
 - Glands
 - Mammary

Perineum

- Similar to the male testes
- Nodular glands
- Located on either side of uterus

Attached to the uterus by the ovarian

ligament

- Production and release of gametes (ova)
 - Production (oogenesis)
 - Release (ovulation)
- Endocrine functions
 - Secrete female sex hormones
 - Estrogen
 - Progesterone
 - Regulate reproductive function

- Germinal epithelium (Outer layer)
- Inner layer (Epithelial cells and Connective tissue)
- Ovarian follicles
 - Found in the connective tissue matrix
- Oocytes are produced before birth
 - both ovaries contain approx 700,000 but declines to approx 400,000 by puberty
- Remain dormant until puberty where FSH influences some to begin meiosis and forms a blister on the ovary
- When blister breaks and releases oocyte
- Oocyte is released into the peritoneal cavity

- Size and shape of a pear
- Fundus
- Body
- Cervix
 - Internal Os
 - External Os (Hymen)

Endometrium

- Mucous membrane
 - Stratum compactum
 - Simple columnar cells with cilia
 - Stratum spongiosum
 - Connective tissue
 - Stratum basale
 - Attaches endometrium to myometrium
 - Compact and Spongy are sloughed off after delivery of baby or during menstration
- Has many exocrine glands that produce mucous
 - Normally acts as a barrier to sperm
 - Changes to facilitate transport of sperm during ovulation
- Rich in capillaries

Myometrium

- 3 layers of smooth muscle
 - Thickest in the fundus
 - Helps propel baby during delivery
 - Thinnest in the cervix
 - Allows for dilation
- Parietal peritoneum
 - Incomplete covering
 - Covers only part of the body (all except the lower ¼ of anterior surface)
 - Does not cover the cervix

- Part of the reproductive tract
- Facilitate growth of ova
 - Fertilized ova implant in the lining of the endometrium
 - Produce nutrient secretions to sustain ova until placenta is developed

Uterine Tubes

- AKA fallopian tubes or oviducts
 - Composed of same layers as uterus
- 3 Regions
 - Isthmus
 - 1/3 extends from upper angle of uterus
 - Ampulla
 - Middle 1/3
 - Infundibulum
 - Funnel shaped distal end with fingerlike projections called fimbriae

- Fimbriae
 - Are not directly connected to the ovaries
- Once the oocyte enters the oviducts, they are propelled by cilia and by peristaltic motion
- This takes 7 days to travel the tube
- Fertilization usually takes place here

- Collapsible tube
- Mostly smooth muscle with mucous membranes arranged in rugae
 - Exocrine glands secreting lubrication

External structures

- Organs of milk production
- A single lactiferous duct divides to form smaller ducts

- Forms secretion sacs (alveoli) that secrete milk

during nursing

- Estrogen and progesterone provide structural development
 - Estrogen develop ducts
 - Progesterone acts on cells 'primed' by estrogen to promote completion of ducts and development of alveoli
 - High levels of estrogen inhibit prolactin secretion
- Shedding of placenta after delivery sharply decreases estrogen levels
 - Stimulates ant pituitary to secrete prolactin
 - Suckling aids in stimulation as well as the post pituitary to release oxytocin

Lactation

Reproductive Cycles

- Recurrent cycles from onset of menses to menopause
 - Ovarian Cycle
 - Endometrial (Menstrual) Cycle
 - Myometrial Cycle
 - Gonadotropic Cycle

Ovarian Cycle

- Reflects changes in the ovaries
 - Ovarian tissue begin meiosis decreasing # of chromosomes in daughter cells to ½ producing primary follicles with an oocyte suspended in development

- Once per month (around first day of menstruation)
 - Primary follicle resumes development
 - Follicular cells surrounding it secrete estrogens and small amount of progesterone
 - Maturing follicle moves to outer surface
 - Meiosis again halts prior to ovulation
- Ovulation occurs 14 days prior to next menstrual cycle

- After ovulation cells of ruptured follicle enlarge and are transform into corpus luteum
 - This continues to grow for 7 − 8 days
 - Will secrete progesterone in increasing amounts (diminishes if fertilization does not occur)
- Nonfunctional corpus luteum are reduced to scar tissue (corpus albicans)
 - Moves into central portion of ovary
 - Eventually disappears

Uterine (Menstrual) Cycle

- Reflects changes in the endometrium
- Phases
 - Menses
 - Postmenstrual
 - Ovulation
 - Premenstrual

Uterine (Menstrual) Cycle

- Menses
 - Occurs on days 1 5 of new cycle
- Postmenstrual
 - Occurs between of menses and ovulation
 - Cycle days 6 to 13 or 14
 - Also known as Preovulatory stage or follicular phase
 - FSH release (and some LH) stimulates growth of ovarian follicles
 - Estrogen levels increase (released from follicle)
 - causes appearance, consistency and amount of cervical mucous
 - Also known as Proliferative Phase
 - Begins with the end of Menstrual phase
 - Estrogen stimulates repair of endometrium

Uterine (Menstrual) Cycle

- Ovulation
 - Cycle day 14
- Premenstrual (postovulatory)
 - − Cycle days 15 − 28
 - Between ovulation and menses
 - Also known as the Luteal phase (secretory)
 - Corpus luteum secretes progesterone during this time
 - Glands and blood vessels develop
 - Glands release glycogen for embryo nourishment

Myometrial Cycle

- Myometrium contracts mildly with increasing frequency during 2 weeks prior to ovulation
- Decrease or disappear between ovulation and next menses
 - To lessen probability of expulsion of fertilized ovum
- Gonadotropic Cycle
 - Anterior pituitary secrets FSH and LH

FSH and Estrogen Secretion

- The cessation of female reproductive cycles
- First changes are noted in the ovaries
 - Cease responsiveness to FSH and LH at around 45 50
- Menstruation cycle soon ceases
- Some will experience, but most will have only a few S/S if any:
 - Hot flashes
 - Diaphoresis
 - Depression
 - Headaches
 - Irritability
 - Insomnia