

3-Lead Rhythm Interpretation

RHYTHMS

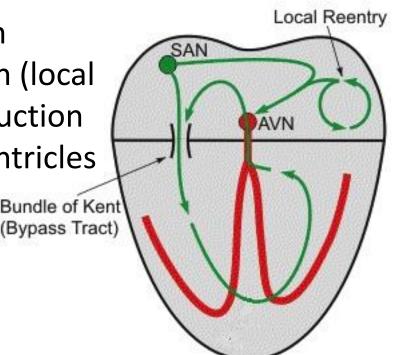
Normal Sinus Rhythm

- Rate
 - 60-100 bpm
- Rhythm
 - Regular
- P waves
 - Normal, upright, only before each QRS complex
- PR Interval
 - 0.12-0.20 seconds
- QRS Complex
 - Normal, duration of <0.12 seconds

- Any rhythm that is not Normal Sinus Rhythm is called a Dysrhythmia
- Not all dysrhythmias require treatment. Many times patients live with known dysrhythmias
- Some dysrhythmias, however can be life threatening and require immediate intervention

Causes of Dysrhythmias

- Some common causes of dysrhythmias are:
 - Myocardial Ischemia, Necrosis, or Infarction
 - Autonomic Nervous System Imbalance
 - Distention of the Chambers of the Heart
 - Blood Gas Abnormalities
 - Electrolyte Imbalances
 - Trauma to the Myocardium
 - Drug Effects and Drug Toxicity
 - Electrocution
 - Hypothermia
 - CNS Damage
 - Idiopathic Events


Impulse Formation

- Normally, cardiomyocytes in the conduction pathway of the heart conduct the impulse for depolarization
- However at times, other cardiomyocytes outside the conduction pathway can also form an impulse
 - When this occurs, these cardiomyocytes are known as ectopic foci
 - These irritable cells can produce a single extra beat = ectopic beat

Impulse Formation

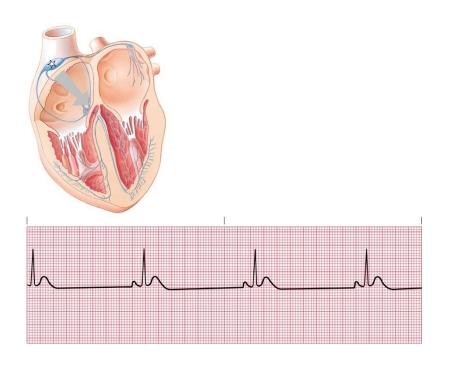
- Other than ectopic foci, another impulse abnormality that can occur is re-entry
- Re-entry
 - Disease or ischemia produces two branches of a pathway

Classification of Dysrhythmias

- When interpreting rhythms, dysrhythmias are classified based on:
 - Nature of origin
 - Changes in automaticity versus disturbances in conduction
 - Magnitude
 - Major versus minor
 - Severity
 - Life threatening versus non-life threatening
 - Site of origin

Classification by Site of Origin

- Dysrhythmias originating in the SA Node
- Dysrhythmias originating in the atria
- Dysrhythmias originating within the AV junction
- Dysrhythmias originating in the ventricles
- Dysrhythmias resulting from disorders of conduction


Dysrhythmias Originating in the SA Node

- Sinus Bradycardia
- Sinus Tachycardia
- Sinus Dysrhythmia
- Sinus Arrest

Sinus Bradycardia

Rules of Interpretation	
Sinus Bradycardia	
Rate	Less than 60
Rhythm	Regular
Pacemaker Site	SA node
P Waves	Upright & normal
PRI	Normal
QRS	Normal

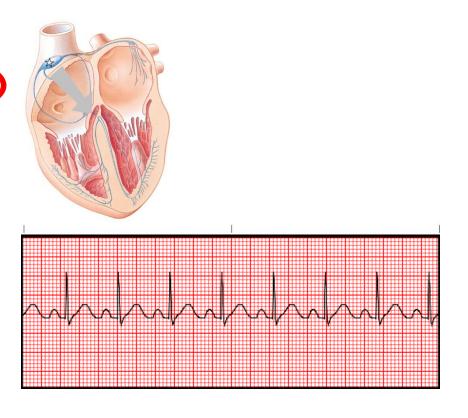
Sinus Bradycardia

Etiology

- Increased parasympathetic (vagal) tone, intrinsic disease of the SA node, drug effects
- May be a normal finding in healthy, well-conditioned persons

Clinical Significance

- May result in decreased cardiac output, hypotension, angina, or CNS symptoms
- In healthy, well-conditioned person, may have no significance


Treatment

 Generally unnecessary unless hypotension or ventricular irritability is present

Sinus Tachycardia

Rules of Interpretation	
Sinus Tachycardia	
Rate	Greater than 100
Rhythm	Regular
Pacemaker Site	SA node
P Waves	Upright & normal
PRI	Normal
QRS	Normal

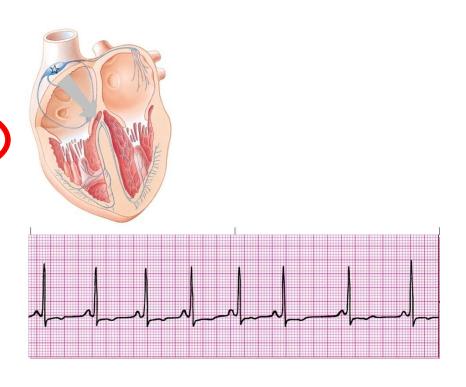
Sinus Tachycardia

Etiology

- Results from an increased rate of SA node discharge.
- Potential causes include exercise, fever, anxiety, hypovolemia, anemia, pump failure, increased sympathetic tone, hypoxia, or hypothyroidism

Clinical Significance

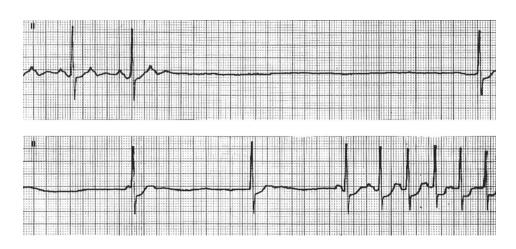
- Decreased cardiac output for rates >140
- Very rapid rates can precipitate ischemia or infarct


Treatment

Treatment is directed at the underlying cause

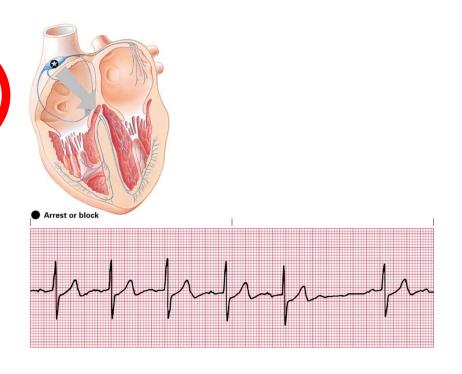
Sinus Dysrhythmia

Rules of Interpretation	
Sinus Dysrhythmia	
Rate	60–100
Rhythm	Irregular
Pacemaker Site	SA node
P Waves	Upright & normal
PRI	Normal
QRS	Normal


Sinus Dysrhythmia

- Etiology
 - Often a normal finding, sometimes related to the respiratory cycle
 - May be caused by enhanced vagal tone
- Clinical Significance
 - Normal variant
- Treatment
 - Typically, none required

Sick Sinus Syndrome


- Bradycardia-tachycardia syndrome
 - Symptomatic vs asymptomatic depends on how tachy/brady the patient becomes
 - May include:
 - Chest pain or palpitations
 - Confusion or other changes in mental status
 - Fainting or near-fainting, fatigue
 - Shortness of breath
- Treatment
 - Symptomatic
 - requires a permanent pacemaker if symptoms relate to bradycardic portion
 - Tachycardia treated with medications

Sinus Arrest

Rules of Interpreta	tion
Sinus Arrest	
Rate	Normal to slow
Rhythm	Irregular
Pacemaker Site	SA node
P Waves	Upright & normal
PRI	Normal
QRS	Normal

Etiology

- Occurs when the sinus node fails to discharge
- May result from ischemia of the SA node, digitalis toxicity, excessive vagal tone, or degenerative fibrotic disease

Clinical Significance

- Frequent or prolonged episodes may decrease cardiac output and cause syncope
- Prolonged episodes may result in escape rhythms

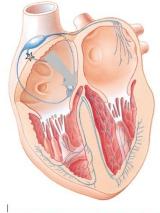
Treatment

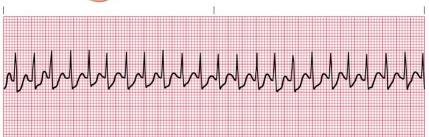
- None if patient is asymptomatic
- Treat symptomatic bradycardia

Dysrhythmias Originating in the Atria

- Supraventricular Tachycardia / Paroxysmal Supraventricular Tachycardia
 - Atrial Flutter
 - Atrial Fibrillation

- SVT is the name given to any extreme tachycardia that originates above the ventricles (specifically above the bundle of His)
- High rate of QRS complexes can make it difficult to determine whether P waves are present
- Narrow width QRS complexes confirm supraventricular origin
- Rhythm can be regular or irregular


- Although SVT is a general name for a group of tachycardias, when a patient experiences SVT in an abrupt onset/offset pattern it is referred to as Paroxysmal Supraventricular Tachycardia (pSVT)
 - Typically this is the result of re-entry



- Rhythms that fall under the classification of SVT are:
 - Multifocal Atrial Tachycardia
 - Atrial Tachycardia
 - Atrial Flutter
 - Atrial Fibrillation

Rate	Tachycardic >150bpm
Rhythm	Regular
Pacemaker Site	Varies among the SA node, atrial tissue, and AV Junction
P Waves	Absent
PRI	Unable to determine
QRS	Normal or narrow

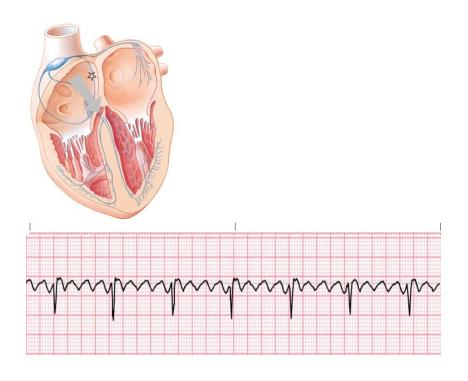
Etiology

- Rapid atrial depolarization overrides the SA node
- May be precipitated by stress, overexertion, smoking, caffeine

Clinical Significance

- May be tolerated well by healthy patients for short periods
- Marked reduction in cardiac output can precipitate angina, hypotension, or congestive heart failure

- ACP Treatment
 - Vagal Manoeuvres
 - Pharmacological Therapy
 - Adenosine
 - Verapamil
 - Electrical Therapy
 - Consider if patient symptomatic with HR > 150.
 - Synchronized cardioversion starting at 100J



Atrial Flutter

Rules	of Interp	retation
-------	-----------	----------

Atrial Flutter

Rate	Atrial rate 200-400 Ventricular rate varies
Rhythm	Usually regular
Pacemaker Site	Atrial (outside SA node)
P Waves	Flutter waves are present
PRI	Usually normal when impulse is conducted
QRS	Usually normal

- Atrial Flutter produces classic "flutter wave" representing the multiple P waves between QRS complexes
 - Referred to as the "saw-tooth pattern"
- Typically atrial impulses are conducted through to the ventricles in a repeated ratio
 - Recorded as the # of P waves : # of QRS
 - Ex. 2:1, 3:1, 4:1

Etiology

- Results when the AV node cannot conduct all the impulses
 - Re-entry circuit in R atrium
- Impulses may be conducted in fixed or variable ratios.
- Usually associated with organic disease such as congestive heart failure (rarely seen with MI)
- Clinical Significance
 - Generally well tolerated
 - Rapid ventricular rates may compromise cardiac output and result in symptoms
 - May occur in conjunction with atrial fibrillation


ACP Treatment

- Electrical Therapy
 - Consider if ventricular rate > 150 and symptomatic
 - Synchronized cardioversion starting at 100J
- Pharmacological Therapy
 - Sodium Channel Blockers (Procainamide)
 - Beta Blockers (Metoprolol)
 - Calcium Channel Blockers (Diltiazem or Verapamil)
 - Cardiac glycosides (Digoxin)

Rules of Interpretation	
Atrial Fibrillation	
Rate	Atrial rate 400-600 (though not discernible) Ventricular rate varies
Rhythm	Irregularly irregular
Pacemaker Site	Multiple ectopic atrial foci
P Waves	None discernible
PRI	None
QRS	Normal

- With AF, due to such a high atrial rate, no discernable P waves are present
- Depending on conduction of impulses through to the ventricles, ventricular rate is irregular and can vary
 - When ventricular rate is tachycardic = AF with rapid ventricular response

Etiology

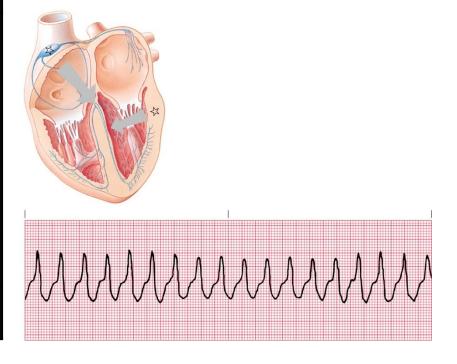
- Results from multiple ectopic foci; AV conduction is random and highly variable
- Often associated with underlying heart disease, metabolic disturbances and toxicological emergencies

Clinical Significance

- Atria fail to contract effectively, reducing cardiac output
- Well tolerated when ventricular rates are normal
- High or low ventricular rates can result in cardiac compromise
- Most common sustained dysrhythmia

ACP Treatment

- Electrical Therapy
 - Consider if ventricular rate > 150 and symptomatic
 - Synchronized cardioversion starting at 100J
- Pharmacological Therapy
 - Sodium Channel Blockers (Procainamide)
 - Beta Blockers (Metoprolol)
 - Calcium Channel Blockers (Diltiazem or Verapamil)
 - Cardiac glycosides (Digoxin)
 - Anticoagulant (Heparin or warfarin)


Dysrhythmias Originating in the Ventricles

- Ventricular Tachycardia
 - Torsade de Pointes
- Ventricular Fibrillation

Ventricular Tachycardia

Rules of Interpretation	
Ventricular Tachycardia	
Rate	100–250
Rhythm	Usually regular
Pacemaker Site	Ventricle
P Waves	None
PRI	None
QRS	>0.12 seconds

Ventricular Tachycardia

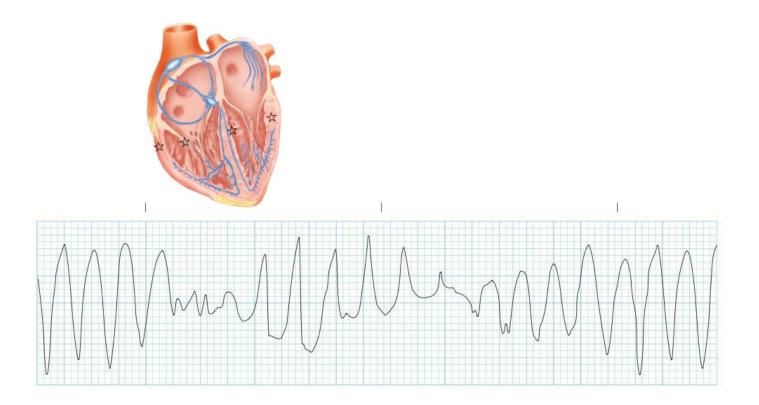
Etiology

- 3 or more ventricular escape complexes in succession at a rate of >100 bpm
- Causes include myocardial ischemia, increased sympathetic tone, hypoxia, idiopathic causes, acid-base disturbances, or electrolyte imbalances
- VT may appear monomorphic or polymorphic
- If rhythm ceases before 30 seconds it is referred to as a run of Vtach
- If rhythm persists for > 30 seconds it is referred to as sustained VTach

Ventricular Tachycardia

Etiology

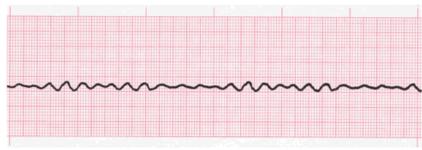
- 3 or more ventricular escape complexes in succession at a rate of >100 bpm
- Causes include myocardial ischemia, increased sympathetic tone, hypoxia, idiopathic causes, acid-base disturbances, or electrolyte imbalances
- VT may appear monomorphic or polymorphic
- Clinical Significance
 - Decreased cardiac output, possibly to lifethreatening levels
 - May deteriorate into ventricular fibrillation


Ventricular Tachycardia

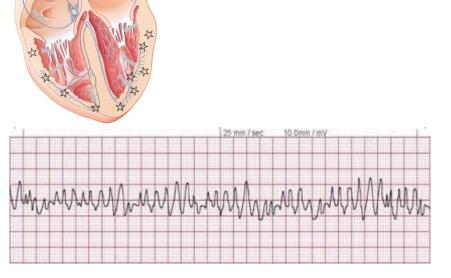
- Clinical Significance
 - Decreased cardiac output, possibly to life-threatening levels
 - May deteriorate into ventricular fibrillation
- Treatment
 - Perfusing patient
 - Administer oxygen and establish IV access
 - ACP may consider immediate synchronized cardioversion starting at 100J for hemodynamically unstable patients
 - ACP may administer Amiodarone 150–300 mg IV
 - Non-perfusing patient
 - Follow ventricular fibrillation protocol

Torsade de Pointes

- Polymorphic VT
- Caused by the use of certain antiarrhythmics


Torsade de Pointes

- Typically occurs in non-sustained bursts
 - Prolonged Q–T interval during breaks
 - QRS rates from 166–300
 - RR interval highly variable
- ACP Treatment
 - Administer magnesium sulfate 1–2 g diluted in 100 ml D₅W over 1–2 minutes
 - Amiodarone 150–300 mg is also effective



Ventricular Fibrillation

Rules of Interpretation	
Ventricular Fibrillation	
Rate	No organized rhythm
Rhythm	No organized rhythm
Pacemaker Site	Numerous ventricular foci
P Waves	Usually absent
PRI	None
QRS	None

Fine VF

Coarse VF

Ventricular Fibrillation

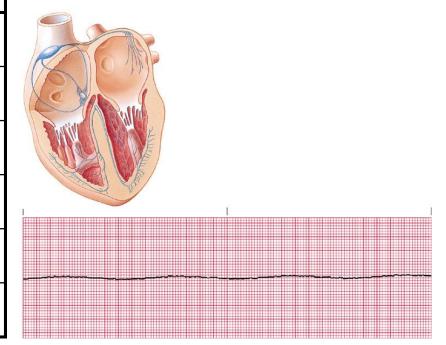
- Etiology
 - Wide variety of causes, often resulting from advanced coronary artery disease
- Clinical Significance
 - Lethal dysrhythmia with no organized electrical pattern, therefore no mechanical squeeze and no cardiac output and

Ventricular Fibrillation

- Treatment
 - Initiate CPR
 - Defibrillate with 200J (360J if monophasic)
 - Control the airway and establish IV access
 - ACP may consider
 - Epinephrine 1:10,000 every 3–5 minutes
 - second-line drugs
 - Lidocaine (1.0 mg/kg 1st dose, 0.5 mg/kg 2nd dose q10 min to a max of 3.0 mg/kg)
 - May consider bretylium, amiodarone, procainamide, or magnesium sulfate (if torsades)

Other Dysrhythmias

- Asystole
- PEA
- Pacemaker Rhythms



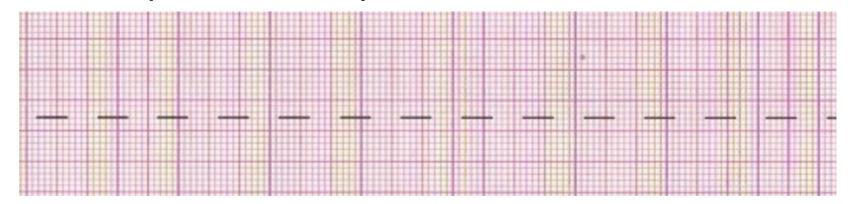
Rules of Interpretation

Asystole

Rate	No Electrical Activity
Rhythm	No Electrical Activity
Pacemaker Site	No Electrical Activity
P Waves	Absent
PRI	Absent
QRS	Absent

Etiology

- Primary event in cardiac arrest, resulting from massive myocardial infarction, ischemia, and necrosis
- Final outcome of ventricular fibrillation
- Clinical Significance
 - Asystole = cardiac arrest
 - Poor prognosis for resuscitation



Treatment

- Administer CPR and manage the airway
- Treat for ventricular fibrillation if there is any doubt about the underlying rhythm
- ACP may administer medications
 - Epinephrine, atropine, and possibly sodium bicarbonate

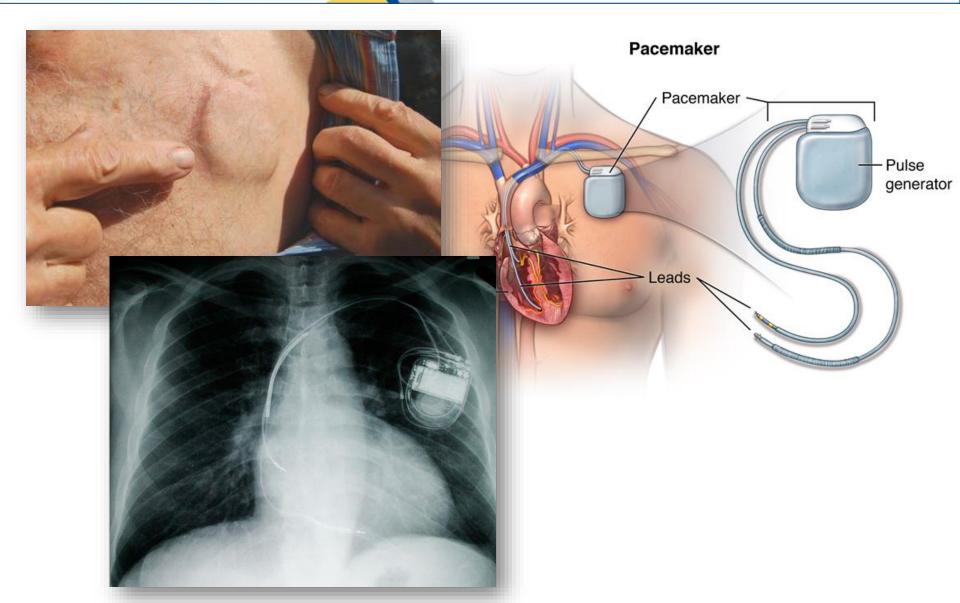
• Don't panic when you see this:

- This represents an electrode (or electrodes) that are not connected
- Troubleshoot your setup as this is not asystole!

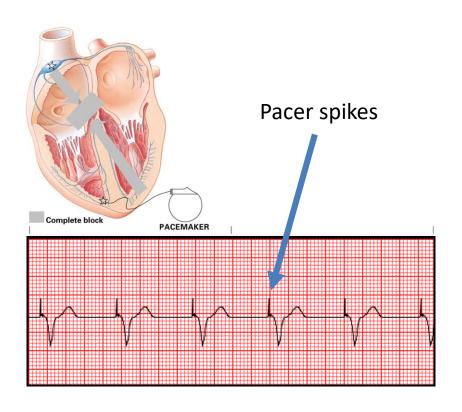
Pulseless Electrical Activity

Characteristics

- Electrical impulses are present, but with no accompanying mechanical contractions of the heart
- Treat the patient, not the monitor
- If pulseless initiate cardiac arrest protocols

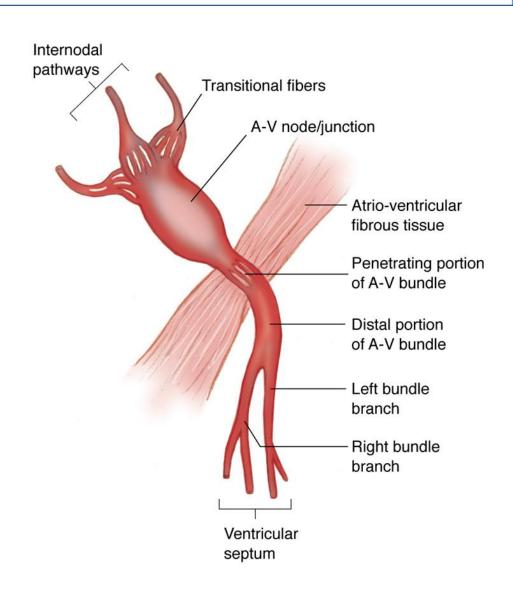

- When attempting to determine underling cause of cardiac arrest remember the H's and T's
 - Hypovolemia
 - Hypoxia
 - Hydrogen Ion (Acidosis)
 - Hypo/hyperkalemia
 - Hypoglycemia
 - Hypothermia

- Toxins
- Tamponade (cardiac)
- Tension Pneumothorax
- Thrombosis (coronary or pulmonary)
- Trauma


- As a result of underlying dysrhythmias, some patients have a surgically implanted cardiac pacemaker
- Two main types:
 - Single chamber: only one pacing lead is placed in the R atrium or R ventricle
 - Dual chamber: two pacing leads, one in the R atrium and R ventricle
- For both types, the device can either:
 - monitor the patient's underlying rhythm and take over pacing when needed = demand pacemaker
 - or automatically pace the patient at a set rate = fixed pacemaker

Rules of Interpretation	
Artificial Pacemaker Rhythm	
Rate	Varies with pacemaker
Rhythm	May be regular or irregular
Pacemaker Site	Depends upon electrode placement
P Waves	None produced by ventricular pacemakers; pacemaker spike
PRI	If present, varies
QRS	>0.12 seconds, bizarre

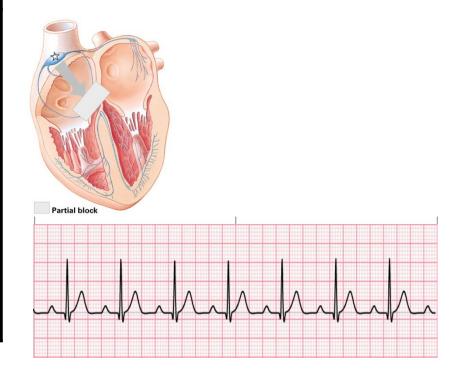
- Problems with Pacemakers
 - Battery failure
 - "Runaway" pacers
 - Displaced leads
- Management Considerations
 - Identify patients with pacemakers
 - Treat the patient
- In hospital, use of a Magnet
 - Inhibits all sensing and resets pacemaker to a predetermined rate (~70)


Other Conduction Disorders

- Atrioventricular Blocks
- Premature Beats
 - Premature Atrial Contractions
 - Premature Junctional Contractions
 - Premature Ventricular Contractions
- Pre-excitation Syndromes

Atrioventricular Blocks

- First-Degree AV
 Block
- Second-Degree AV Block Type I
- Second-Degree
 Type II AV Block
- Third-Degree AV Block



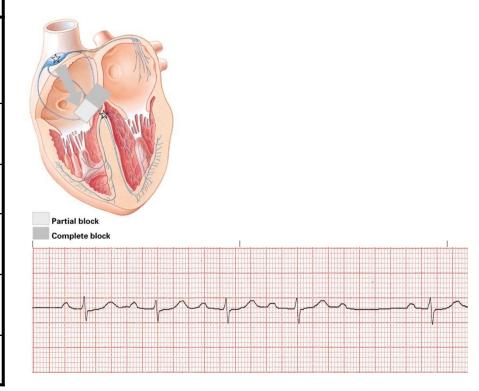
First-Degree AV Block

First-Degree AV Block

Rate	Depends on underlying rhythm
Rhythm	Usually regular
Pacemaker Site	SA node or atrial
P Waves	Normal
PRI	> 0.20 Seconds
QRS	Usually < 0.12 seconds

First-Degree AV Block

- Not an underlying rhythm
- Etiology
 - Delay in the conjunction of an impulse through the AV node
 - May occur in healthy hearts, but often indicative of ischemia at the AV junction
- Clinical Significance
 - Usually not significant, but new onset may precede a more advanced block
- Treatment
 - Generally, none required other than observation
 - Avoid drugs that may further slow AV conduction



Second-Degree Type I AV Block

Rules of	Interpre	tation
----------	----------	--------

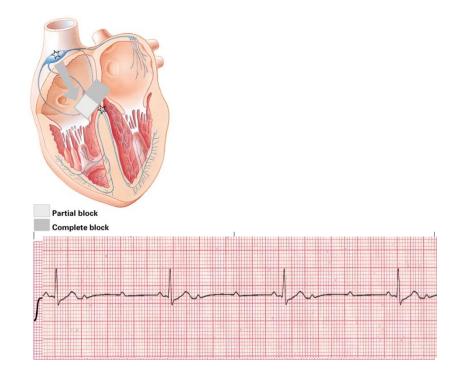
Second-Degree Type I AV Block

Rate	Depends on underlying rhythm
Rhythm	Regularly irregular
Pacemaker Site	SA node or atrial
P Waves	Normal, some P waves not followed by QRS
PRI	Increases until QRS is dropped, then repeats
QRS	Usually < 0.12 seconds

Second-Degree Type I AV Block

Etiology

- Also called Mobitz I, or Wenckebach
- Delay increases until an impulse is blocked
- Indicative of ischemia at the AV junction
- Clinical Significance
 - Frequently dropped beats can result in cardiac compromise


Treatment

- Generally, none required other than observation
- Avoid drugs that may further slow AV conduction
- Treat symptomatic bradycardia

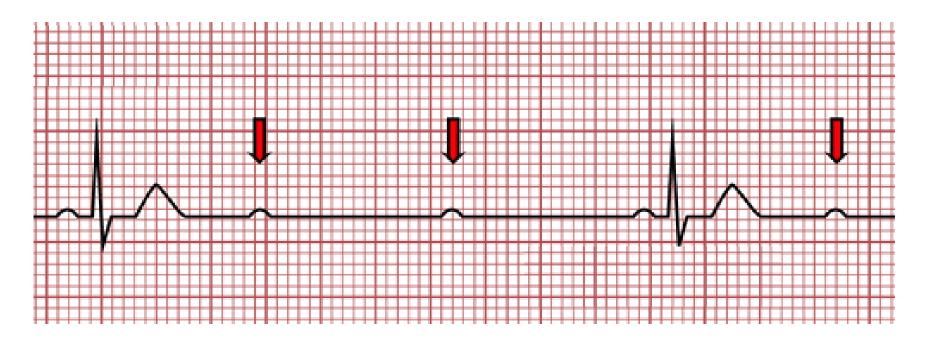
Second-Degree Type II AV Block

Rules of Interpretation	
Second-Degree Type II AV Block	
Rate	Depends on underlying rhythm
Rhythm	Regularly irregular
Pacemaker Site	SA node or atrial
P Waves	Normal, some P waves not followed by QRS
PRI	Constant for conducted beats, may be > 0.21 seconds
QRS	Normal or > 0.12 seconds

Second-Degree Type II AV Block

Etiology

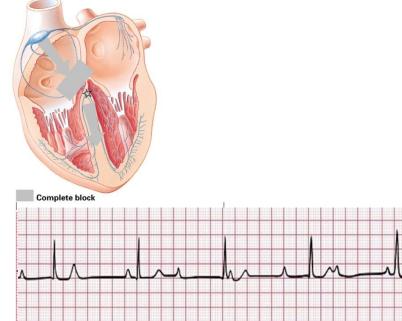
- Also called Mobitz II or infranodal
- Intermittent block of impulses
- Usually associated with MI or septal necrosis
- Clinical Significance
 - May compromise cardiac output and is indicative of MI
 - Often develops into 3rd degree AV block
- Treatment
 - Avoid drugs that may further slow AV conduction
 - Treat symptomatic bradycardia
 - ACP may consider transcutaneous pacing


Second-Degree AV Blocks

- Both Type I and Type II typically occur in fixed ratio
 - Reported as ratio of # of P waves: # of QRS complexes
 - 4:3 Second-degree represents a dropped QRS complex every fourth atrial beat
 - It not possible to determine if a 2:1 second-degree is Type I or Type II since you cannot determine if PRI is lengthening

Second-Degree AV Blocks

 For advanced ("high-grade")second-degree AV blocks, there may be multiple dropped QRS complexes in a row

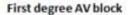


Third-Degree AV Block

Rules of Interpretation

Third-Degree AV Block

_	
Rate	Atrial rate is normal; ventricular, 40–60
Rhythm	Both atrial and ventricular are regular
Pacemaker Site	SA node and AV junction or ventricle
P Waves	Normal in appearance with no correlation to QRS
PRI	No relationship to QRS
QRS	0.12 seconds or greater

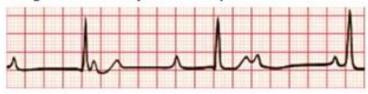

Third-Degree AV Block

Etiology

- Absence of conduction between the atria and the ventricles
 - Also known as complete AV dissociation
- Results from AMI, digitalis toxicity, or degeneration of the conductive system
- Clinical Significance
 - Severely compromised cardiac output
- Treatment
 - Transcutaneous pacing for acutely symptomatic patients
 - Treat symptomatic bradycardia
 - Avoid drugs that may further slow AV conduction

Dysrhythmias Originating Within the AV Junction

Second degree AV block (Mobitz I or Wenckebach)


Second degree AV block (Mobitz II)

Second degree AV block (2:1 block)

Third degree AV block with junctional escape

Premature Beats

- At times, non-pacemaking regions of the heart can fire, causing depolarization of the heart before the next regular beat was due
- These are referred to as premature contractions and are named based on their origin
 - Premature Atrial Contractions
 - Premature Junctional Contractions
 - Premature Ventricular Contractions
- Term is a misnomer as not all premature depolarizations produce a mechanical contraction
 - Acceptable, and more accurate to use "Complex" in place of "Contraction"

Premature Atrial Complex

- Also known as PACs, these early depolarizations originate in the atria but outside of the SA node
 - Since origin is in the atria:
 - A P wave is present
 - QRS is normal in width
 - Since impulse originates outside the SA node:
 - The P wave morphology is different than the others

Premature Atrial Complex

Etiology

- Single electrical impulse originating outside the SA node
- May result from use of caffeine, tobacco, or alcohol, sympathomimetic drugs, ischemic heart disease, hypoxia, or digitalis toxicity, or may be idiopathic

Clinical Significance

Presence of PACs may be a precursor to other atrial dysrhythmias

Treatment

- None if asymptomatic
- Treat symptomatic patients by administering highflow oxygen and establishing IV access

Premature Junctional Complex

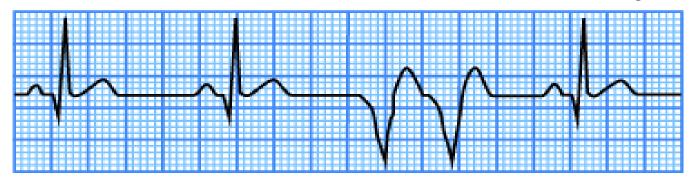
- Also known as PJCs, these early depolarizations originate in the Junction but outside of the AV node/Bundle of His
 - Since origin is in the Junction:
 - A P wave may or may not be present
 - If a P wave is present it will be inverted (due to retrograde transmission)
 - QRS is normal in width but different in appearance

Premature Junctional Complex

Etiology

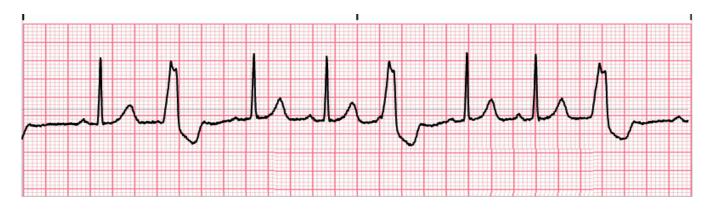
- Single electrical impulse originating in the AV Junction
- May occur with use of caffeine, tobacco, alcohol, sympathomimetic drugs, ischemic heart disease, hypoxia, or digitalis toxicity, or may be idiopathic
- Clinical Significance
 - Limited, frequent PJCs may precursor other Junctional dysrhythmias
- Treatment
 - None usually required

- Also known as PVCs, these early depolarizations originate in the Ventricles but outside of the Bundle branches/Purkinje fibers
 - Since origin is in the Ventricles:
 - A P wave will not be present
 - QRS width is > 0.12s
 - At times T wave is merged with QRS due to QRS width



Etiology

- Single ectopic impulse resulting from an irritable focus in either ventricle
- Causes may include myocardial ischemia, increased sympathetic tone, hypoxia, idiopathic causes, acid—base disturbances, electrolyte imbalances, or as a normal variation of the ECG
- May occur in patterns
 - Bigeminy, trigeminy, or quadrigeminy
 - Couplets and triplets
 - Uni vs multifocal


When 2 PVCs occur back to back = couplet

 When 3 or move PVCs occur back to back to back = run of VTach

When a PVC occurs every third complex = trigeminy



When a PVC occurs every second complex = bigeminy

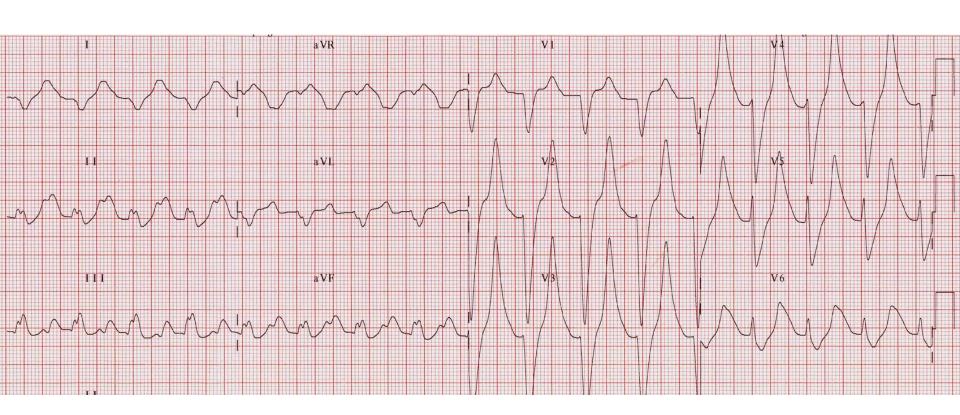
 When PVCs originate from the same irritable focus, they have the same in morphology = unifocal PVCs

 When PVCs originate from different irritable foci, they have the different morphologies = multifocal PVCs

Premature Ventricular Contractions

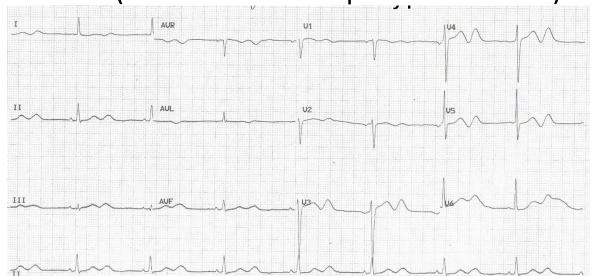
- Clinical Significance
 - PVCs can be **perfusing** (cause a mechanical contraction) or **non-perfusing** (electrical activity only)
 - Although PVCs can be benign, increased clinical significance with:
 - More than 6/minute
 - Couplets or runs of ventricular tachycardia
 - Bigeminy
 - Multifocal PVCs
 - PVCs associated with chest pain

Premature Ventricular Contractions

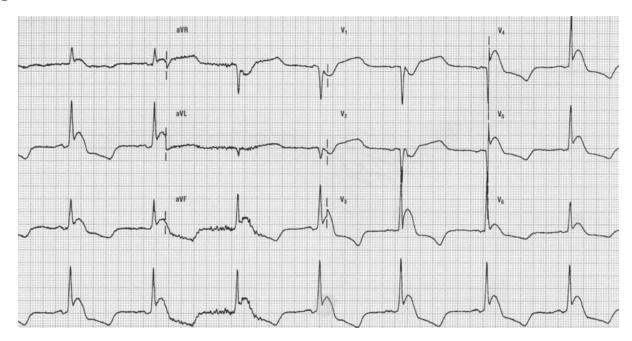

• Treatment

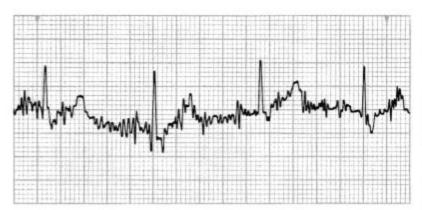
- Non-malignant PVCs do not usually require treatment in patients without a cardiac history
 - Administer oxygen and establish IV access
- ACP may treat malignant PVCs:
 - Lidocaine 1.0 –1.5 mg/kg IV bolus.
 - If PVCs are not suppressed, repeat doses of 0.5-0.75 mg/kg to max dose of 3.0 mg/kg.
 - If PVCs are suppressed, lidocaine drip 2–4 mg/min.
 - Reduce the dose in patients with decreased output or decreased hepatic function and patients > 70 years old.

- Hyperkalemia
 - Can produce tall ("peaked") T waves
 - Suspect in patients with a history of renal failure
 - Differentiate from Hyperacute T waves
 - Hyperacute should only be in leads affected by hypoxia whereas Hyperkalemic, peaked T waves would be global
 - Best seen in precordial leads
 - Typically not peaked until serum K⁺ > 6 6.5mEq/L

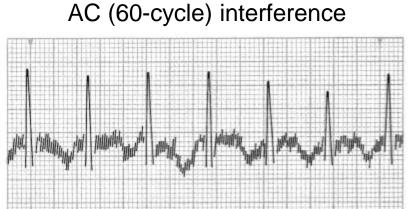


Serum $K^+ = 9.2 \text{ mEq/L}$


- Hypokalemia
 - Can produce ECG changes that include:
 - P waves with decreased amplitude
 - Increase PRI
 - Flattened or inverted T waves
 - U waves (best observed in precordial leads)


Hypothermia

- Can produce ECG changes that include:
 - Osborn wave ("J" wave)
 - T wave inversion
 - Prolonged PRI and QRS



MEDAVIE

Muscle Tremors

Lose electrodes

Biotelemetry (Poor reception of signal)

- Minimize possible artifact by:
 - Stop patient movement
 - Have patient stop talking
 - Stop ambulance is necessary to capture accurate tracing
 - Support limbs
 - Cover with blankets to reduce shivering
 - Move electrode to another location on limb to avoid interference by muscle tissue
 - Replace electrodes if not adhering to patient
 - Shave patient's hair if not allowing skin contact
 - Troubleshoot worn out/damage cables