

Cardiovascular Disease

Leading Causes of Death

	Carrada	Ontario
Heart disease and stroke	78,942 (36%)	29,851 (37%)
Carnoer	62,769 (29%)	23,189 (28%)
Respiratory disease	22,026 (10%)	7,745 (10%)
Accidents, suicide, violence	13,996 (6%)	4,372 (5%)
All other causes	41,797 (19%)	16,236 (20%)
Totals:	219,530 (100%)	81,393 (100%)

CVD Deaths in Canada by Gender

State Carvida 1989 (most secont data available)

- Accounts for the death of more Canadians than any other disease.
 - In 1999 (the latest year for which Statistics Canada has data), cardiovascular disease accounted for 78,942 Canadian deaths.
 - Male 35%
 - Female 37%

_	CAD	54%
_	Stroke	20%
_	Other problems	16%

- Electrical system, viral heart infections, and heart muscle disease
- Vascular problems 10%
 - HTN
- Cost of cardiovascular diseases to the Canadian economy is over \$18 billion a year according to a 1994 study by the Heart and Stroke Foundation.

Blockage in right coronary artery

adam.com

- Narrowing of the lumen of the medium and large arteries
- Narrowing caused by collection of plaque (atheromas) which decrease blood flow to the tissues
- Usually found in areas of turbulence (bifurcations of the vessels)
- Turbulence may rip atheromas free causing emboli and produces a lesion of the tunica intima
- Lesion provides access to the tunica media and platelets will adhere to the collagen producing further narrowing as the clot forms
- Lesions allow for Ca to enter the tunica media which calcifies the layer decreasing or destroying the elasticity of the vessel at that point (Arteriosclerosis)

Atherosclerosis

Risk Factors

- Age and Sex
 - Increased age is a dominant risk factor
 - Predominant in Men at early ages, appears to be a 10 year lag for women though the gap closes after menopause
- Family History
- Smoking
 - Causes endothelial damage and therefore promotes plaque thrombosis

Health Edu Santé

- Risk Factors
 - Obesity, Lack of Exercise
 - Hypercholesterolemia
 - Risk is proportional to serum level of LDL cholesterol.
 - Hyperlipidemia may be familial, and thus may account for the fact that a strong family history of premature CAD is a significant risk factor.
 - HDL cholesterol is protective.
 - Alcohol use
 - Stress
 - Sedentary Life Style
 - Type 'A' personality

Health Edu Santé

- Risk Factors
 - Obesity, Lack of Exercise
 - Predisposing illness
 - Hypertension
 - Although definitely a risk factor, HTN alone probably does not cause plaques.
 - It may act synergistically with hypercholesterolemia by first causing mechanical wall stress and damage.
 - Diabetes Mellitus
 - Strong independent risk factor.
 - Believed to be a result of sugar level changes cause release of growth factors that stimulate smooth muscle proliferation
 - Race
 - Variances in statistics world wide but seems to equal out when lifestyles mimic national norm

- The severity is dependent on:
 - Time of onset
 - Degree of obstruction
 - Most people with clinical disease have extensive CAD, usually with at least one major vessel showing severe narrowing of at least 75% reduction in the cross-sectional area of its lumen.
 - Pt's ability to produce collateral circulation

- Can manifest as any of four clinical entities
 - Angina Pectoris
 - Acute Myocardial Infarction
 - Sudden Cardiac Death
 - Chronic Ischemic Heart Disease

Angina Pectoris

- Etiology
- When the circulatory system is unable to provide enough oxygen to meet the demands of the heart muscle
- Angina Pectoris means "Choking of the Heart"
- The lack of O_2 to the coronary vessels creates a build up of CO_2 resulting in anaerobic metabolism (without O_2). This metabolism's major byproduct is Lactic Acid
- The lactic acid irritates the nerve endings in the heart muscle and produces a pain response
- Types of angina that will be discussed
 - Prinzmetal's Angina
 - Stable Angina
 - Unstable Angina
 - Angina Decubitus

Angina Pectoris

- Precipitating Factors
- Atherosclerosis tends to be major cause
- Emotional stress
- Increased activity

Note:

- If increased O₂ demands are not met, may lead to ischemia of the muscle
- This ischemia may result in arrhythmias or infarction

Prinzmetal's Angina

after intracoronary nitroglycerin Chronic management: Calcium Channel Blockers

- Also known as Variant Angina Pectoris
- Caused by temporary spasm of coronary vessels and may or may not include atherosclerosis
 - About 2/3 have severe coronary atherosclerosis in at least one major vessel.
 - The spasm usually occurs very close to the blockage.
 - Can occur in people with valvular heart disease, hypertrophy or uncontrolled HTN
- Appears to be substantially less common than typical forms
- Unlike typical angina, it nearly always occurs when a person is at rest.
 - It doesn't follow physical exertion or emotional stress, either. Attacks can be very painful and usually occur between midnight and 8 a.m.

Prinzmetal's Angina

nitroalycerin

Chronic management: Calcium Channel Blockers

- Signs and Symptoms
 - typically complains of a pressurelike, squeezing retrosternal chest discomfort of several minutes duration
 - Transient ST elevation in association with chest pain
 - both of which resolve spontaneously or with nitroglycerin
- Usually treated with calciumchannel blockers with or without long-acting nitrates

Angina Decubitus

- Occurs when a person is lying down (not necessarily during sleep)
- Due to fluids being redistributed in this position due to gravity, and the heart has to work harder
- Usually a complication of cardiac failure due to the strain on the heart resulting from the increased intravascular volume
- Patients usually have severe coronary artery disease.

- AKA "Exertional Angina"
- Usually precipitated by exertion or stress
- Pain lasts up to 10 minutes (may last up to 15 minutes)
- Usually relieved with rest, O₂ administration and NTG
- Attacks tend to be similar to each other and are typically relieved in the same manor (though we do allow for variances)

Unstable Angina

- AKA "Pre-infarction Angina"
- Usually a change from the stable angina's normal presentation (in either precipitating factor, frequency, duration, intensity and quality of the pain)
- Includes new-onsets of angina pain
- May occur with light exertion and may even come on at rest
- Pain usually lasts 10 minutes or more
- Responds to rest, O₂ administration and NTG though may take increasing amounts compared to stable
- May mimic MI S/S and should be treated as such

- Signs and Symptoms
- Chest Pain
 - Described as burning, heavy, pressure, tightness, squeezing
 - May radiate to shoulders, jaw, arm, neck and back
- Anxious
- Dyspnea
- Cool to the touch
- Diaphoresis
- N/V
- Syncope

- Management
- Primary Survey (ABC's, RBS)
- Place pt at rest (Sitting or lying)
- Emotional Support
- Administer O₂ (100% via NRB)
- Baseline Vitals
- Administer Aspirin (160 mg PO)
- Administer NTG (0.4 mg SL, q 3-5 min with BP > 100/50)
- Initiate IV (Lock preferred)
- Monitor (3 lead, 12 lead)
- Transport

- Etiology
- Results from partial or total occlusion of O₂ rich blood to the cardiac tissue
- This results in ischemia, injury and death (necrosis) of the tissue distally to the occlusion
- May be caused by:
 - atherosclerosis
 - rupture of the vessels
 - angina
 - severe hypoxia
 - shock

- Size of infarct is determined by:
 - the metabolic needs of the tissue
 - presence of collateral circulation
 - duration of time before reperfusion is established
- Most AMI's occur in the L Ventricle or the interventricular septum (40 – 50%)
- R ventricle MI is usually a result of occlusion to the RCA (30 – 40%)
- Lateral wall is usually L circumflex (15 20%)
- Are typically classed into 3 categories
 - Unstable angina
 - Non-Q-Wave MI
 - Q-Wave MI

- Unstable angina
 - Not a complete obstruction that may progress
- Non-Q-Wave MI
 - Evident only with ST elevation or T wave abnormalities
- Q-Wave MI
 - Abnormal Q wave in 2 or more leads
 - > 5 mm in depth or > 0.04 s in duration

- As with angina the lack of O₂ causes the cells to switch to anaerobic metabolism and produces a build up of lactic acid an CO₂
- Cells begin to lose ability to maintain electrical charge and remain depolarized (reversible at this point)
- After a period of time, tissue distal to occlusion will be necrotic and is replaced with scar tissue over a period of weeks
- These scar tissue areas may result in weaker tissue and develop into aneurysms on the ventricular walls or ventricular rupture

- Death Secondary to MI
- Lethal arrhythmias
 - -VT
 - VFib
 - Cardiac Standstill
- Pump Failure
 - Cardiogenic Shock
 - CHF
- Rupture of Myocardium
 - Ventricle, Septum or papillary muscle

- Signs and Symptoms
- Chest Pain
 - Onset most likely will occur at rest and is not alleviated by rest or NTG
 - May be absent (with Diabetics and some elderly); known as "Silent MI"
 - May only have symptoms of dyspnea, syncope or confusion
- Dyspnea
- Cyanosis
- Agitation
- N/V
- Diaphoresis
- Palpitations
- Sense of impending doom
- Syncope

- Vitals
- Variant based on size of infarct
- Inferior
 - Parasympathetic response
- Anterior
 - Sympathetic response

- Management
- Primary Survey (ABC's, RBS)
- Place pt at rest (Sitting or lying)
- Administer O₂ (100% via NRB)
- Baseline Vitals
- Administer Aspirin (160 mg PO)
- Administer NTG (0.4 mg SL, q 3 5 min with BP > 100/50)
- Initiate IV (Lock preferred)
- Morphine (2.5 mg IV, q 3 5 min)
 - If pain is not relieved after 3 sprays of NTG
- Monitor (3 and 12 leads)
- Treat dysrhythmias as required
- Transport

- Management Keys
- Return patency of coronary circulation
 - Fibrinolytics, angioplasty, CABG
- Decrease area of ischemia/infarct
- Other pharmaceutical adjuncts
 - Heparin
 - Magnesium Sulphate
 - ACE Inhibitors
 - B-Blockers
 - Ca Channel Blockers

Anticoagulant Therapy

- Heparin
 - Inhibits growth of thrombus
 - Inhibits formation of new thrombus
- Warfarin (Coumadin)
 - Inhibit Vitamin K use thus inhibiting coagulation
- Novasen (ECASA)
 - Inhibit the Thromboxane A-2 thus inhibiting aggregation
- Integrilin and Clopidogrel
 - Antithrombotic agent that reversibly inhibits platelet aggregation by preventing binding of fibrinogen to the GP IIb-IIIa receptor.

- Fragmin (LMWH)
 - Only small chains of polysaccharides
 - Works the same as heparin
- Fondaparinux (Arixtra)
 - a synthetic pentasaccharide
 - Inhibits thrombin formation

- Pharmaceutical support to dissolve a thrombus thus restoring blood flow to ischemic tissue
- Common forms
 - Streptokinase
 - acts with plasminogen to form a "activator complex" that converts residual plasminogen into plasmin
 - Tissue Plasminogen Activator (t-Pa)
 - converts the proenzyme plasminogen to plasmin See each individual drug for specifics:
 - Alteplase (Natural form), Reteplase and Urokinase (rTPA)
 - Tenecteplase (TNK)
 - rTPA
- Time restraints
- Eligibility restraints

- ISIS 2 Study (Second International Study of Infarct Survival) – 1988
 - Was a randomized trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected AMI
 - Showed ASA alone improved risk of CV death by 20%
 - When added to management with Streptokinase showed a 40% reduction
- West Study?

- Eligibility
 - AMI clinical presentation
 - ECG Criteria
 - Absence of contraindications
 - Absence of cardiogenic shock

Inclusions

- Pain of ischemic origin
- Time > 20 minutes but < 12 hours</p>
- > 30 y/o (some suggest < 75 y/o)
- A/O X 3
- BP (Systolic < 180 mmHg, Diastolic < 110 mmHg)
- STE > 1 mm (0.1 mV) in 2 or more contiguous leads

Exclusions

- CVA, IC bleed or CNS dysfunction in last 6 months (some suggest 1 year)
- Active bleeds or bleeding disorders (menses excluded)
- Suspected Aortic Dissection

- Relative Contraindication
 - Pregnancy or post partum state
 - Uncontrolled HTN
 - Major surgery within last 3 weeks
 - Intercranial tumor
 - -AAA
 - CPR
 - Trauma in last 2 to 4 weeks
 - Use of anticoagulants
 - Terminal illness
 - Other possible criteria based on hospital/EMS protocols

Health Ed ÉduSanté

Heart Failure

- The inability for the heart to function at its normal capacity
- May be caused by
 - Myocardial ischemia (Acute or chronic)
 - Valvular dysfunction (Aortic, mitral and prosthetic)
 - LV outflow obstruction (Aortic stenosis)
 - Idiopathic myopathy (Hypertrophy)
 - Acquired myopathy (toxic, metabolic)
 - Myocarditis (radiation, infection)
 - Pericarditis
 - Pericardial tamponade
 - Systemic HTN
 - Dysrhythmias
 - Anemia

Heart Failure

High vs Low Output

- Low output
 - Inherent problem in myocardial contraction

- High output
 - Inability to meet excess functional demands
 - Anemia, thyrotoxicosis (Grave's Disease) and even large AV shunts

Systolic vs Diastolic

Systolic

- Impairment of myocardial contraction
 - Increased afterload
 - Damaged myocytes (necrosis)

Diastolic

- Impairment of myocardial relaxation
 - Myocardial ischemia
 - Hypertrophy

Left Ventricular Failure

- Failure is as a result of damage to the function of the left side of the heart
- With ineffective pumping of the ventricle an increase in LVEDV and LVEDP.
- Results in a back-up of blood into the pulmonary circulation as the pressure is transferred into the atrium and pulmonary veins.
- This increase in pressure increases hydrostatic pressure and forces plasma into the alveoli (Pulmonary Edema)
- May be as a result of:
 - AMI or Ischemia
 - Valve damage
 - Hypertension

Left Ventricular Failure

because of damaged

Left lune

Right lur

- The resulting failure decreases SV and the body tries to maintain homeostasis
 - Tachycardia, vasoconstriction activation of reninangiotensin-aldosterone system (increasing BP)
- This increases oxygen demand of the heart and results in further complications

Left Ventricular Failure

- Signs and Symptoms
- Dyspnea
 - Orthopnea
 - Spasmodic cough with foamy pink sputum
 - Paroxysmal nocturnal dyspnea
- Apprehension, agitation or confusion
- Cyanosis
- Diaphoretic
- Adventitious lung sounds (crackles, rhonchi, wheezes "cardiac asthma")
- JVD (if pressure backs up into the R ventricle)
- Hypertension
- Tachycardia
- Tachypnea, laboured
- Chest Pain
- Heart sounds
 - S3 gallop (early diastolic due to abnormal filing of the dilated ventricle)
 - S4 (forceful atrial contraction due to stiff ventricle)

CHF – with Pulmonary Edema

- Management
- Keyed on
 - decreasing venous return to the heart
 - Decreasing MvO₂
 - Improving oxygenation
- Primary Survey (ABC's, RBS)
- Place pt at rest (Sitting with legs down)
- Baseline Vitals (Include auscultation)
- Administer O₂ (100% via NRB) assist if required
 - May require CPAP or BiPAP, consider PEEP of $5 10 \text{ cmH}_2\text{O}$
- IV Lock
- Pharmacological support
- Monitor (3 and 12 lead)
- Transport

CHF – with Pulmonary Edema

- Pharmacology
- NTG (0.4 mg SL, q 3 5 minutes)
 - decrease preload and afterload thus decreasing MvO₂
- Ventolin (5 mg Aerosol if wheezing present and decompensating)
- Furosemide (0.5 1.0 mg/kg or double home dose)
 - Vasodilatation and decrease in intravascular volume
- Morphine (2. 5 5.0 mg IV)
 - Decrease MvO₂ with dilation of venous system and decrease respiratory effort
- Consider nitrate drip
 - NTG (5 µg/min and increase until desired SBP is achieved)
 - Nitroprusside $(0.1 5.0 \mu g/kg/min)$
- ACE inhibitors (Captopril, Monopril, enalapril)
- Cardiogenic shock or hypotensive
 - Dopamine (5 to 15 μg/kg/min)
 - Dobutamine (2 to 20 μg/kg/min)
 - Levophed $(0.5 30 \mu g/min)$

- Etiology
- Results from failure of the right side of the heart
- May be caused by LVF as the increased pressure is returned to the RV through the pulmonary circulation
- Right atrium is unable to keep up with venous return and produces a back-up in the systemic system
- This back-up creates an increase in venous pressure, increasing hydrostatic pressure on the venous end of the capillary.
- This increase in turn inhibits the return of plasma to the system and fluid accumulates in the tissue (edema)

- May be as a result of:
 - LVF
 - Hypertension
 - COPD
 - PE
 - Value disease
 - Right MI

- Signs and Symptoms
- Chest pain, may have RUQ pain
- Dyspnea
- Hypotension
- Tachycardia
- Venous congestion
 - Engorged liver and/or spleen (hepatomegaly, splenomegaly)
 - May see hepatojugular reflux
 - Distend Neck Veins
- Peripheral Edema (may be pitting)
 - feet and hands, entire body
 - sacral area for the bedridden
- Edema in serous cavities
 - Peritoneum (Abdomen) causes ascites
 - Pericardium pericardial effusion (may be able to tolerate large quantities if develops over an extended period of time)

- Management
- Primary Survey (ABC's, RBS)
- Place pt at rest (Sitting with legs down or semi-Fowler)
- Baseline Vitals
- Administer O₂ (100% via NRB)
- Initiate IV (Fluid challenge for hypotension to relieve LV filling)
- Monitor
- Treat LVF if present as well (watch fluids)
- Transport

CHF - Comparison

Cardiogenic Shock

- Etiology
- Occurs as a result of complete failure of the pump to meet the metabolic needs of the body
- Usually resulting from massive MI (> 40%) or by large areas (diffuse) ischemia
- The decrease in function decreases SV, which also decreases CO and eventually the BP
- Results in inadequate perfusion of organs
- High mortality rate (> 70%) even with aggressive therapy

Cardiogenic Shock

- Signs and Symptoms
- An accumulation of S/S of shock and AMI
- Altered LOC
- Hypotension (SBP usually < 80 mmHg)
- Dyspnea or tachypnea
 - Pulmonary edema with crackles
- Hypoxemia
- Acidosis
- Tachycardia
- Cool, clammy skin maybe pale, cyanotic or ashen in color
- Chest pain
- Sense of impending doom

Cardiogenic Shock

- Management
- Primary Survey (ABC's, RBS)
- Place pt at rest (Supine or semi-Fowler if dyspneic)
- Baseline Vitals
- Administer O₂ (100% via NRB) assist if necessary
 - Auscultation for adventitious sounds
 - May require aggressive airway management
- Initiate IV (TKVO)
- Monitor
- Transport (Emergent situation do not delay on scene time)
- Pharmacological support
 - Inotropic agents (Dopamine or dobutamine)

- Etiology
- A chronic condition where BP is consistently greater than 140/90 mmHg
- The increase creates an increase PVR and forces the heart to work harder to overcome it by increasing rate and SV
- This excess workload, as with any muscle, causes it to enlarge (hypertrophy) which will eventually lead to failure

- Categories
 - Transient
 - Mild (uncomplicated)
 - Urgencies
 - Emergencies

- Transient
 - May be found in
 - Anxiety
 - Pancreatitis
 - Early dehydration
 - Alcohol withdrawal
 - Drug OD
 - Catecholamine induced HTN emergencies
 - MAOI OD, phenochromocytoma, Tyramine (an enzyme contained in many foods, especially aged cheese) with MAOI
 - Treatment is based on correcting the cause versus treating the HTN

- Mild (uncomplicated)
 - Defined as a diastolic pressure < 115 mmHg
 without S/S of end organ damage
 - Acute management not required
 - May require medication support

Urgencies

- Elevation of DBP > 115 mmHg without S/S of end organ damage
- Reduce pressure over 24 48 hours
- Commonly seen with non-compliance of HTN medications

Emergencies

- Increase in BP with end organ damage or dysfunction
- Is not determined by the BP but the degree of end organ dysfunction
 - Eclampsia may result in BP of 160/90 mmHg
- S/S can progress over hours to days
- Treatment must be initiated ASAP to prevent further damage

Hypertension

Emergencies

- Management
 - Lowering of BP to a level consistent with the patient's normal in a controlled graded manner
 - Recommend 30% reduction in 30 minutes
 - End point is resolution of S/S

May use

- Nitrates (Nitroprusside, NTG)
- Beta-blockers (Propranolol, Esmolol, Metoprolol)
- Ca channel blockers (Verapamil, Nefedipine, Diltiazem)
- Diuretics (Furosemide)
- ACE inhibitors (Captopril)
- Clonidine (Catapres decreases renin production)

Hypertension Emergencies

- Where the hypertension leads to irreversible end-organ damage such as the heart, brain or kidneys
- Include
 - MI with HTN
 - Aortic Aneurysm with HTN
 - Pulmonary Edema with HTN
 - Intracranial hemorrhage with HTN
 - Toxemia with HTN (pregnancy, sepsis)
 - Encephalopathy with HTN

Hypertension Emergencies

- Signs and Symptoms
- Paroxysmal nocturnal dyspnea
- SOB
- ALOC
- Vertigo
- Headache
- Epistaxis
- Tinnitus (ringing in the ear)
- Changes in visual acuity
- N/V
- Seizures
- ECG changes

Pericardial Tamponade

- Defined as impaired diastolic filling of the heart by increased intrapericardial pressure and volume
- Will alter the ability of the atria and ventricles to fill
- Thus decreasing SV
- Maybe
 - Gradual in onset (neoplasm, infection)
 - Acute (trauma, CPR)

Pericardial Tamponade

- Signs and Symptoms
- Chest pain
- Tachycardia
- Ectopics
- Other ECG changes
 - Low-voltage QRS and T waves
 - ST elevation or non-specific T wave changes
- JVD (elevated venous pressures)
- Decreased SBP (late)
- Pulsus paradoxus
- Faint or muffled heart sounds

Pericardial Tamponade

- Management
- History
- Ensure adequate oxygenation
- Transport
- If hypotensive consider fluid challenge
- Definitive treat would include pericardiocentesis

Aortic Aneurysm

- Etiology
- Dilatation of a vessel through the weak lining of the lumen
- Usually develop in areas where the tunica media is weak and allows for expansion
- This increases turbulence and pressure and may eventually rupture
- May be caused by
 - Atherosclerosis
 - Infectious diseases
 - Trauma
 - Genetic disorders

Abdominal Aortic Aneurysm

- Usually occurring below the renal arteries before the aorta divides into the common iliac
- 10 X more common in men
- Most prevalent between 60 70 y/o
- May remain asymptomatic if stable
- If unstable, leaking and rupture may occur as more blood fills the cavity
- Upon rupture the retroperitoneal tissues may tamponade the leak and the pt will present asymptomatic
- If tamponade does not occur than massive hemorrhaging will begin
- Either will develop S/S of shock

Abdominal Aortic Aneurysm

Signs and Symptoms

- May present with syncope followed by hypotension and bradycardia (vagal response)
- Unexplained hypotension
- Unexplained Syncope
- Sudden onset of abdominal pain or tearing/ripping back pain
- Low back pain or flank pain radiating to the groin, thigh or perineum that is not relieved with rest or position
- Peritoneal irritation
- Urge to defecate
- Pulsatile mass above the umbilicus (left of midline) usually greater then 5 cm
- Weak or absent distal pulse
- Hardening and distention of abdominal cavity

Abdominal Aortic Aneurysm

Management

- Primary Survey (ABC's, RBS)
- Gentle handling of pt
- Place pt at rest
- Baseline Vitals
- Administer O₂ (100% via NRB) assist if necessary
- Initiate IV (TKVO but if ruptured fluid challenge)
- Attach monitor
- Transport

- Usually an acute occurrence that may be caused by
 - Systemic hypertension
 - Atherosclerosis
 - Congenital abnormalities
 - Degenerative changes in the aortic tunica media
 - Trauma
 - Pregnancy
- Results from a small tear of the tunica intima and rapid filling of the medial layer causing rupture of the adventitia
- May happen in any section of the aorta, but is more common in the ascending aorta
- Affects twice as many men as women

- As the aneurysm expands it may impede blood flow to areas by blocking their respective arteries as they branch off the aorta
- For these reasons DAA may result in
 - Syncope
 - Stroke
 - Absent or reduced pulses
 - LVF (as a result of aortic semilunar valve regurgitation)
 - Pericardial tamponade
 - AMI

- Signs and Symptoms
 - Altered LOC
 - Sudden onset of pain (> 70%)
 - Tearing, ripping or cutting
 - Located in the back, epigastrium, abdomen or extremities depending on location of AA
 - Pain may radiate to from the interscapular region downward
 - Pain is maximal from onset
 - Pale, cool and clammy
 - Peripheral cyanosis
 - Significant differences in BP from R to L
 - Peripheral pulses are unequal

Management

- Primary Survey (ABC's, RBS)
- Gentle handling of pt
- Place pt at rest and reduce stress
- Baseline Vitals
- Administer O₂ (100% via NRB) assist if necessary
- Initiate IV (TKVO but if ruptured fluid challenge)
- Attach monitor
- Transport
- Prepare for aggressive management if rupture occurs

Arterial Occlusion

- A sudden blockage of an artery by trauma, embolus or thrombosis
- Severity depends on location and size as well as collateral circulation
- Ischemia begins distal to occlusion and may eventually lead to necrosis of tissue
- Common types are
 - CVA/TIA
 - -MI
 - PE

Arterial Occlusion

- Signs and Symptoms
 - Pain in extremity distal to occlusion
 - Pallor distal to site (mottled or cyanotic)
 - Lower temperature distal to site
 - Changes in sensation and function
 - Weak or absent pulses
 - Bruit over site (auscultated turbulence)
 - Decrease capillary refill
 - May see S/S of shock

Arterial Occlusion

- Management
 - Immobilize the affected limb
 - Manage shock if present
 - Consider analgesic (with consultation with OLMC)

Peripheral Vascular Disease

Includes

- Varicose veins
 - Permanent dilation of the veins, may result from weak valves (typically in the legs)
 - May be seen in pt's whose occupation requires long periods of standing, pregnancy
- Superficial Thrombophlebitis
 - Inflammation of a vein associated with the formation of a thrombus
- Deep Vein Thrombosis
 - May produce life threatening PE

Deep Vein Thrombosis

- Occlusion of the deep veins
- Most common in the lower extremities
- Risk factors
 - Recent trauma
 - Advanced age
 - Recent MI
 - Inactivity
 - CHF
 - Cancer
 - Oral contraceptives
 - History of thrombus
 - Obesity
 - Smoking

Deep Vein Thrombosis

- Signs and Symptoms
 - Pain
 - Edema
 - Warmth
 - Erythema (redness of the skin) or cyanosis
 - Tenderness
- Management
 - Immobilization and elevation of the extremity

Endocarditis

- Infection and inflammatory process that affects the lining of the heart and valves
- Detected by performing blood cultures and an echocardiogram
- Usual cause is a bacteria (staph or strep) or by a fungal infection
 - The bacteria or fungus can enter the bloodstream from infections elsewhere in the body (urinary tract, GI tract, or the skin), or as a result of any surgical or dental procedure.

Endocarditis

Signs and symptoms

- Chest pain
- Fever
- Fatigue, weakness
- Chills and night sweats
- Muscle and joint pain
- Heart murmur
- Late signs may include swelling of the feet and legs, and shortness of breath with an irregular heartbeat.

Endocarditis

Treatment

- Antibiotics
- Non-aspirin medications such as Tylenol can be used for fever and minor pain
- A regular diet can be followed as tolerated.
- Fluid intake should be increased while fever is present.
- Good dental hygiene is needed to prevent infection.

Myocarditis

- Inflammation of the myocardial layer by an inflammatory response to an injury or infection.
- May be caused by radiation or side effects of some medications.
 - Most commonly it is caused by a virus
- Signs and Symptoms
 - Chest pain (from fluid collection)
 - Dyspnea
 - Fever or chills
 - Fatigue
 - Some patients have a rash or joint pain (arthritis) related to rheumatic fever (from previous streptococcal infection)
 - Arrhythmias
- Treatment
 - Symptoms generally clear up with rest and time.
 - Avoid strenuous exercise until the condition has completely cleared.
 - Management of chest pain and arrhythmias is most important.
 - if heart failure occurs, treat as needed.
 - NSAIDs
 - In more severe instances, steroid-containing medications or immunosuppressive drugs are used.
 - Antibiotics are given for acute rheumatic fever or other infections.

Pericarditis

- Inflammation of the pericardium
- Possible causes
 - Young, otherwise healthy persons who develop pericarditis often have had a recent viral infection
 - MI
 - Kidney failure caused by the buildup of certain toxins
 - Tumors (Cells from tumor may metastasize to the pericardium)
 - Radiation therapy
 - Tuberculosis
 - Overactive immune system (rheumatoid arthritis and lupus)

Health Ed EdySanté

Pericarditis

- Signs and Symptoms
 - Chest pain
 - predominantly felt below the sternum and/or below the ribs on the left side of the chest and, occasionally, in the upper back or neck.
 - Increased on inspiration, lying supine
 - Pericardial effusion
 - Low grade Fever
 - Dyspnea
 - of concern because it may indicate that the amount of fluid is reaching a critical point and requires urgent medical treatment
 - Friction rub
 - PR segment depression with diffuse STE without Q wave changes
 - Need to rule out other causes of CP
 - MI, DAA, PE, Pneumothorax, Digestive tract perforation
- Treatment
 - Anti-inflammatory agents (Aspirin)
 - NSAIDs (ibuprofen, Motrin, Aleve)
 - If pericardial effusion is significant treat as tamponade

Mitral Valve prolapse

- Valve billow upward during atrial systole
- Mitral regurgitation may occur
- Seen in young women and may be inherited
- May be asymptomatic
- If symptomatic may see
 - Palpitations (tachycardia)
 - Syncope, lightheadedness
 - Fatigue, lethargic, weakness
 - Dyspnea, hyperventilation
 - Chest tightness
 - Anxiety
 - Atypical chest pain

Mitral Valve prolapse

- Treatments include
 - Antibiotics for endocarditis
 - Beta-blockers
 - Surgical repair

Valve Problems

- Aortic stenosis
- Pulmonary stenosis
- Mitral valve stenosis

Mitral Stenosis

- Impairs flow of blood
- Commonly caused by
 - Acute rheumatic fever
 - Bacterial endocarditis
 - May be congenital
- Causes increase in LVEDV and may result in hypertrophy
- Development of arrhythmias (AFib)

Atrial Septal Defect (ASD)

- May be
 - Ostium primum (low)
 - Ostium secundum (middle)
 - Sinus venosus defect (high)
- Usually asymptomatic
 - May develop CHF
 - Experience SOB with exertion

Ventricular Septal Defect (VSD)

- Classed
 - Pre-membranous (high)
 - Muscular (low)
- May spontaneously close (before 2 y/o)
- May show signs of CHF
- Pulmonary hypertension

Patent ductus arteriosus

- Ductus arteriosus remains open
- some of the oxygenated blood that should be going to the body may flow back and reenter the blood circulating in the lungs
- the baby may not receive enough oxygen and there is an increase in carbon dioxide in the baby's blood
- Results in
 - Dyspnea
 - May have a heart murmur
 - Pulses may feel full and the baby's blood pressure may go up
 - May not feed well and may not gain weight
- The signs and symptoms just described help to make the diagnosis. Often a PDA is then confirmed by an echocardiogram
- Treatment
 - If opening is small it may not cause any problems for the baby, treatment is not necessary and the ductus will close by itself as the baby matures
 - Decrease the amount of fluid the baby is getting (through IV and feeds)
 - Lasix may be given to help remove fluid through the urine
 - Large ductus opening who are having difficulty will need repair

Patent ductus arteriosus

The aorta and pulmonary trunk are separated

The open ends are closed

- Indomethacin (Indocin)
 - medication causes constriction of the ductus
 - given IV and several doses may be needed
- Surgery
 - PDA Ligation

Tetralogy of Fallot

- Also known as
 - Blue Baby
 - Fallot's Tetralogy Pulmonic Stenosis-Ventricular Septal Defect
- Most common form of cyanotic congenital heart disease
- Consists of a combination of 4 different heart defects
 - ventricular septal defect
 - pulmonary stenosis
 - Aorta overrides the ventricular septal defect
 - right ventricular hypertrophy
- The severity of the symptoms is related to the degree of blood flow obstruction from the right ventricle.
- If not treated, the symptoms usually become progressively more severe.
- Blood flow to the lungs may be further decreased and severe cyanosis may cause life-threatening complications.
- The exact cause of Tetralogy of Fallot is not known.
- Symptoms
 - Cyanosis at birth or may be seen with increased demands (feeding, crying)
 - Prolonged cyanosis may produce clubbing, poor growth
 - Are at risk for embolotic diseases, CV disease, brain abscess, seizures or sudden death

Tetralogy of Fallot

Pulmonary Stenosis

Hypertrophy of Rt. Ventricle

Overriding Aorta

Transposition

