
BARIATRIC ASSESSMENT

Primary Care Paramedicine

Module: 09

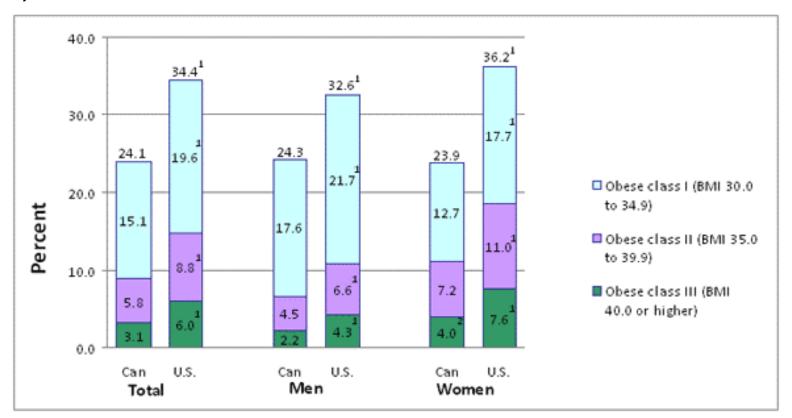
Section: 07

- Define "bariatric patient"
- Describe the effects of obesity
- List the appropriate assessment techniques for the bariatric patient.

- Bariatrics is the science of providing healthcare for those who have extreme obesity
- Both a patient's weight and the distribution of this weight throughout the body are involved in determining whether one is a bariatric patient

 A bariatric patient is defined as anyone regardless of age, who has limitations in health and social care due to their weight, physical size, shape, width, health and mobility and a Body Mass Index (BMI) $> 40 \text{ kg/m}^2$ and or are 40 kg above ideal weight for height.

Statistics


Body mass index, overweight or obese, self-reported, adult, by age group and sex (Number of persons)

	2010	2011	2012	2013	2014		
	number of persons						
Total, 18 years and over	13,099,396	13,211,116	13,485,120	13,941,347	14,222,521		
Males	7,661,608	7,618,576	7,722,703	8,109,785	8,155,903		
Females	5,437,788	5,592,540	5,762,416	5,831,562	6,066,618		
18 to 19 years	187,940	183,433	188,870	173,473	199,623		
Males	114,717	107,920	106,684	95,143	129,550		
Females	73,222	75,513	82,185	78,330	70,073		
20 to 34 years	2,573,610	2,624,762	2,709,110	2,772,702	2,768,988		
Males	1,608,859	1,626,667	1,673,988	1,753,417	1,731,932		
Females	964,751	998,095	1,035,122	1,019,285	1,037,056		
35 to 44 years	2,404,987	2,411,112	2,391,855	2,514,222	2,510,247		
Males	1,510,783	1,428,959	1,476,840	1,568,605	1,518,826		
Females	894,204	982,152	915,015	945,616	991,421		
45 to 64 years	5,588,496	5,549,375	5,624,364	5,739,486	5,866,118		
Males	3,258,305	3,240,279	3,213,664	3,309,785	3,325,475		
Females	2,330,192	2,309,096	2,410,701	2,429,700	2,540,644		
65 years and over	2,344,363	2,442,434	2,570,921	2,741,465	2,877,545		
Males	1,168,944	1,214,750	1,251,527	1,382,834	1,450,121		
Females	1,175,419	1,227,684	1,319,393	1,358,631	1,427,423		

Prevalence of obesity in adults aged 20 to 79, by sex: Canada, 2007 to 2009 and United States, 2007 to 2008

$$BMI = \frac{Weight (kg)}{(Height in meters)^2}$$

$$IBW(men) = 50 kg + (2.3 \frac{kg}{in} X height over 60 inches)$$

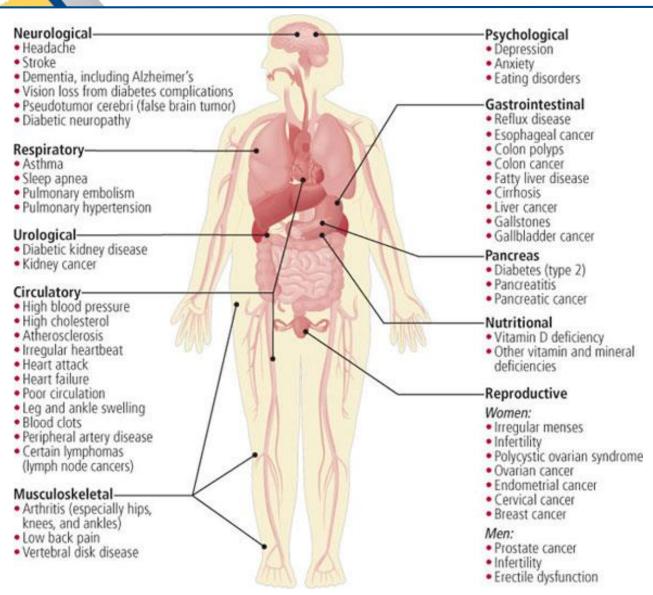
$$IBW(women) = 45.5 kg + (2.3 \frac{kg}{in} X height over 60 inches)$$

Dosing Weight =
$$IBW + (0.4 X (Actual - IBW))$$

If Actual < IBW, then Dosing Weight = Actual

Health Risks

Classification	BMI (kg/m²)	Risk of Co-morbidities	
Underweight	< 18.5	Low (but increased risk of other clinical problems)	
Healthy Weight	18.6 – 24.9	Average	
Overweight (pre-obese)	25.0 – 29.9	Increased	
Obese (Grade I)	30.0 – 34.9	Moderate	
Obese (Grade II)	35.0 – 39.9	Severe	
Obese (Grade III)	> 40	Very Severe	



Body Fat Mass

10 – 20 % Fat	20 – 25% Fat	25 – 30% Fat	30 – 40% Fat	>40% Fat
Healthy Weight	Overweight	Moderately Obese	Severely Obese	Morbidly Obese
Normal weight	t Overweight	Obese level I	Obese level II M	orbidly obese

Affects of Obesity

- Restrictive lung pattern due to both increased pulmonary blood volume and increased chest wall mass
- Work of breathing exacerbated by:
 - Abnormal diaphragm position
 - Upper airway resistance
 - Increased daily CO2 production
- \downarrow FRC, \downarrow TLC, \downarrow VC, \downarrow IC, \downarrow MV, \downarrow FVC, \downarrow ERV
- ↑ FEV1/FVC
- Strongly correlated with obstructive sleep apnea syndrome

Difficult Ventilation

- Facial structures (facial girth and excess adipose tissue) make it difficult to fit and seal mask
- Redundant palatal and pharyngeal tissues
- Smaller pharyngeal area due to adipose tissue
- Increased tongue size
- Tendency of obese men to have facial hair
- Positioning

- 2 person/4 handed technique with OPA and NPA recommended
- Pressure required to ventilate manually with a BVM may simply not be possible
- Ramp head for better positioning

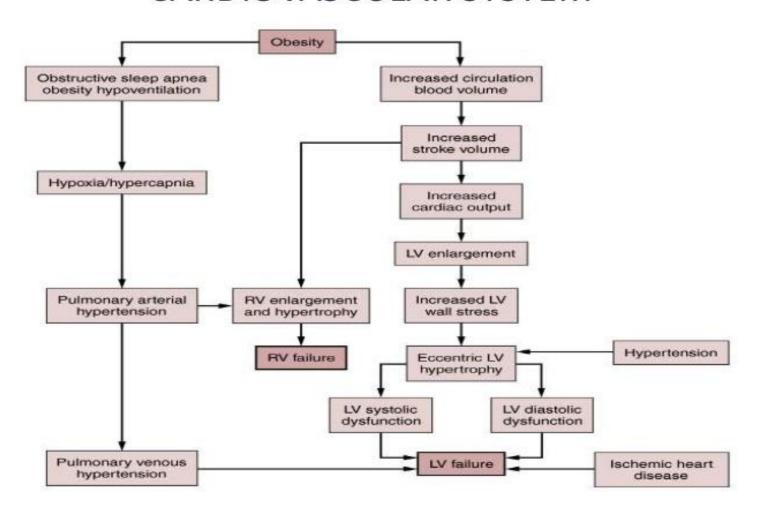
- Physiological changes:
 - − ↑ blood volume
 - − ↑ vascular tone
 - − ↑ afterload
 - $-\downarrow$ LV contractility
 - Diastolic dysfunction
- Obscured landmarks may make assessing and monitoring pulse rate and blood pressure difficult
- Use of correct cuff sizes when attempting blood pressure measurements
- Tourniquets may not work well or may cut into the flesh if applied too tightly (use BP Cuff instead)
- External jugular access may be impossible due to difficulty in locating landmarks
- The reliability of the ECG may be affected by incorrect lead application due to loss of landmarks and inconsistent voltages.

- Follow current ILCOR Guidelines for Basic and Advanced Life Support
 - Airway
 - Adjust as recommended
 - Chest Compression
 - Advised compression depth of 4 − 5 cm
 - Do not wait until exhaustion occurs
 - Pharmacology
 - No change

- Differences in renal blood flow and filtration function can cause drugs to be cleared more or less rapidly than anticipated
- Increased adipose tissue causes an increased distribution of lipophilic drugs that can lead to decreased serum levels, as well as prolonged elimination times
- As a general rule, anticipate the half-life of benzodiazepines and other sedatives to increase in obese patients
- However, actual recommendations for altering dosing in these patients is still an area of active research

Other System Changes

- Renal
 - — ↑ Clearance of renal excreted drugs
 - Hypertensive and diabetic nephropathy
- Hematology
 - 一个 Fibrinogen
 - Venous stasis
- Gastrointestinal
 - Hiatal hernia
 - − ↑ Gastric secretions
 - ↓ pH



- Metabolic/Endocrine
 - — ↑ Resting energy expenditure
 - Insulin resistance
- Immunology
 - Impaired neutrophil function

CARDIOVASCULAR SYSTEM

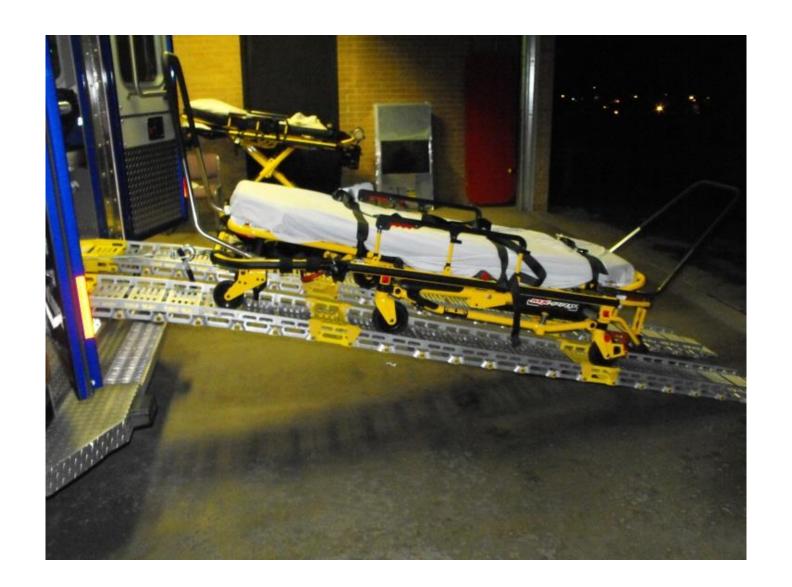
- Treat the patient with dignity and respect.
- May require larger cuff size for obtaining BP and specialized equipment for moving.
- Include patient in assessment techniques for positioning of comfort and safety.
- Anticipate airway difficulty.

- Caring for the bariatric patients is challenging
- It puts workers at risk for injuries during repositioning, treatment and transport activities
- Many paramedic activities encountered while caring for bariatric patients readily exceed safe working-loads and can lead to:
 - Musculoskeletal injuries
 - Strains and sprains
 - Excessive spinal loading

Bariatric Transport Challenges

- Traditional equipment can be unsafe and unaccommodating
- Plan an safe transport and work with a team
- Know the resources you have available (fire department, additional EMS personnel)
- Early notification to receiving hospital.

Patient Transfer and Handling Systems



Patient Transfer and Handling Systems

Patient Transfer and Handling Systems

