
IMMUNOLOGY

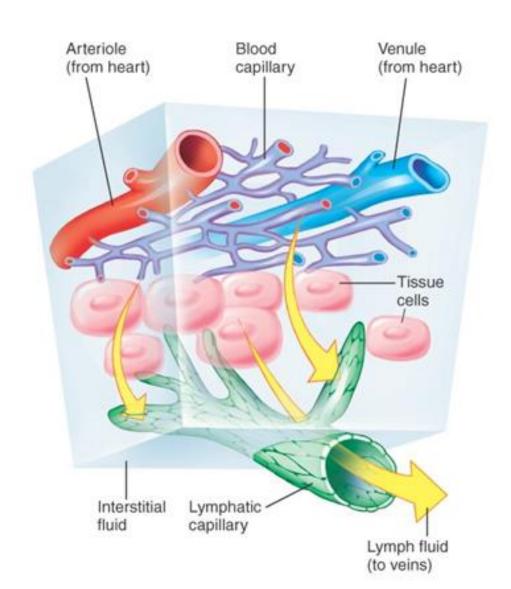
Primary Care Paramedicine

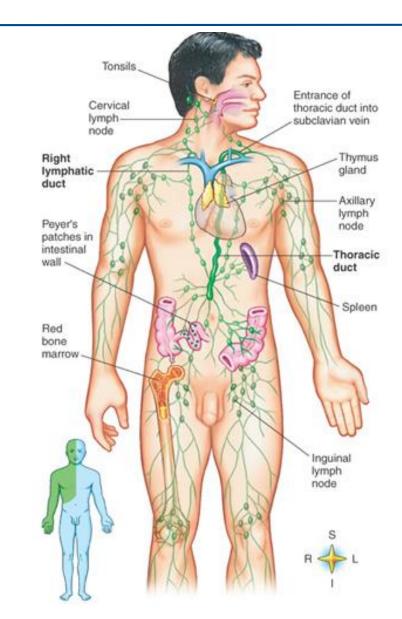
Module: 16

Section: 01

Immunology

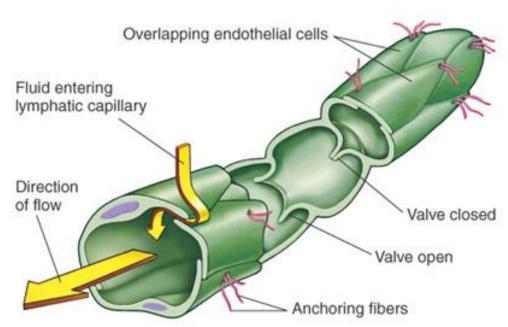
LYMPHATIC SYSTEM





- Maintains fluid balance
- Immunity
- A specialized portion of the circulatory system
- Contains
 - Lymph (moving fluid)
 - Lymphatics (group of vessels)

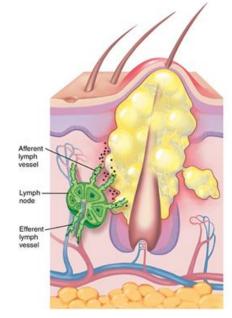
Lymphatic System

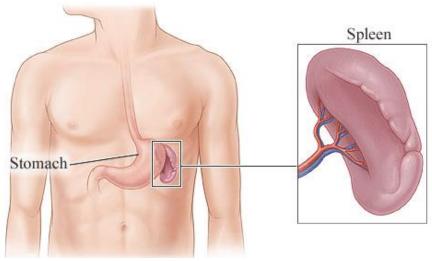

Lymph

- Clear, watery fluid
- Results from fluid exiting circulation (c. 3000 ml daily)
- Is similar to interstitial fluid (is isotonic to)
 - Usual contains more proteins
- Most comes from the liver and small intestines (more then ½)

Lymphatic System

- Lymphatic Vessels
 - Originate as lymphatic capillaries
 - Lie side by side of the blood capillaries
 - Thinner
 - Have more valves
 - Have nodes
 - Continues to merge to form major ducts
 - Right lymphatic duct
 - Upper right quadrant of body
 - Thoracic duct
 - Rest of body


- Function of vessels
 - Permit particulate matter (which cannot be absorbed into capillary)
 to be removed from interstitial space


- Movement of fluid
 - Is uphill
 - Usually attributed to muscular movement

Lymphatic System

- Lymph nodes
 - Have several lymph vessels entering into this "cellular hub"
 - One vessel leaving
 - Function
 - Defense
 - Filtration
 - Phagocytosis
 - Hematopiesis
 - Site of maturation of some cells
- Spleen
 - Large lymphoid organ
 - Monitors blood for infection
 - Filters out old erythrocytes and platelets

- A system that uses many mechanisms to ensure the integrity and survival of the internal environment.
- Two major categories:
 - Non-specific "innate" immunity
 - Ancient general defense system against common pattern elements found in pathogens
 - Able to attack the threat as soon as it is present
 - No memory
 - Specific "adaptive" immunity
 - Recognizes specific pathogens and remembers them
 - Slow to recognize targets and overcome the threat (especially first time exposure)

- The work of the system is completed by cells or substances created by cells
- Primary Type:

Non-specific Immunity

- Neutrophils
- Monocytes
- Macrophages
- Natural Killer (NK) Cells

Specific Immunity

- Lymphocytes
 - T-Cells
 - B-Cells

Non-Specific Immunity

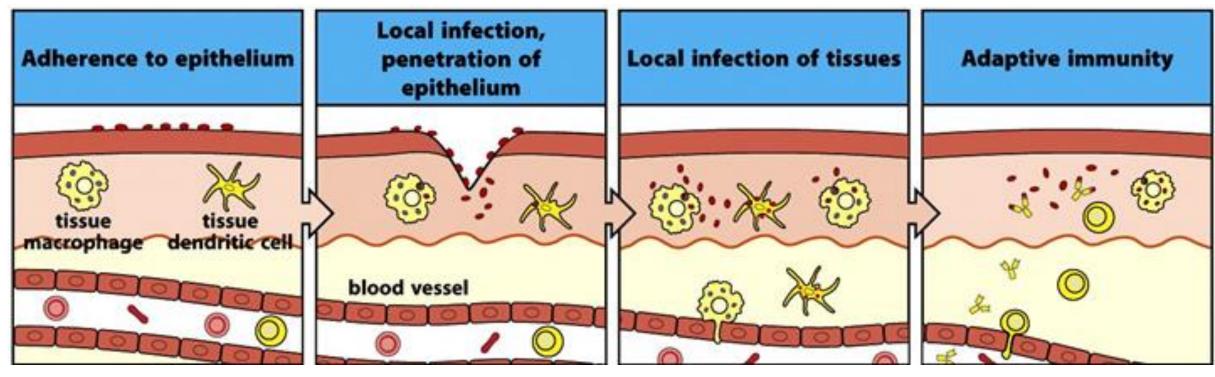
- Species resistance
 - Genetic characteristics to protect the body from certain pathogens
- Mechanical and chemical barriers
 - Skin and mucosa
 - A continuous wall that separates the internal environment from the external environment
 - Secretions
 - Sebum, mucus and enzymes chemically inhibit the activity of pathogens
- Inflammation
 - Isolates pathogens and stimulates the speedy arrival of large numbers of immune cells

Non-Specific Immunity

Phagocytosis

- Neutrophils
 - Granular leukocytes that are usually the first phagocytic cell to arrive due to the inflammatory response
- Macrophages
 - Monocytes that have enlarged to become phagocytic cells (may be called by other names when found in specific tissues)
- Dendritic Cells
 - Important bridge between innate and adaptive immune responses
 - Phagocytose pathogens in the tissues and carry them to lymph nodes for identification by T cells
- Natural Killer (NK) Cells
 - A group of lymphocytes that kill different types of cancer cells and virus infected cells

Interferon


 Protein produced by cells after they become infected by a virus which inhibits further spread of the viral infection

Complement

 Plasma proteins that produce a cascade of chemical reactions that cause lysis of foreign cells

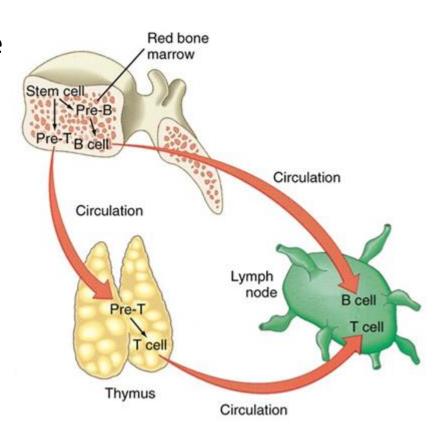
Immune System

Physical Barriers

Innate non-specific Immunity

Adaptive specific Immunity

- Attack specific agents the body recognizes as "non-self"
- Adapts to pathogens and has a memory for future exposures
- Controlled by lymphocytes (a class of WBC)
- Lymphocytes are produced throughout life in the red bone marrow from the hematopoietic stem cells
- Develop into two major classes
 - B lymphocytes (B Cells)
 - Produce antibodies (antibody-mediated immunity)
 - T lymphocytes (T Cells)
 - Kill infected human cells or activate other cells to kill pathogens (cell-mediated immunity)

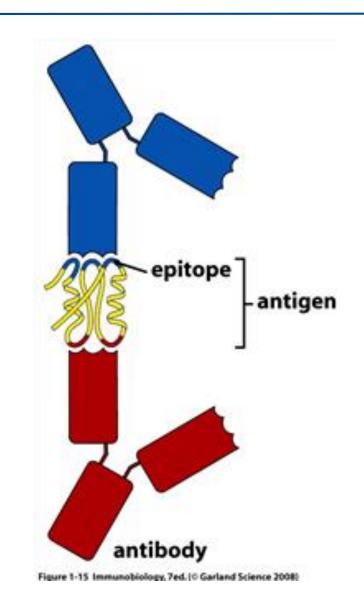

Antibody-Mediated Immunity

Inactive B Cells

- Produced in the yolk sac, then the red marrow or the fetal liver
- Circulated to the lymph nodes and spleen

Activate B Cells

- When an inactive B cell encounters a specific antigen
- This binding triggers a series of mitotic divisions producing clones of B cells
- The clones can differentiate into plasma cells and secrete antibodies
- Others remain in the lymphatic system as memory cells and will become plasma cells if introduced to the antigen at another time



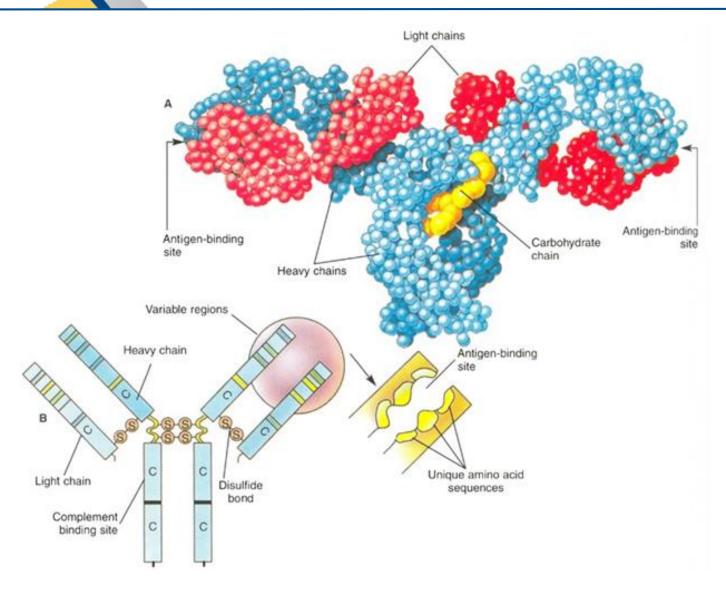
Antibody-Mediated Immunity

Antigen

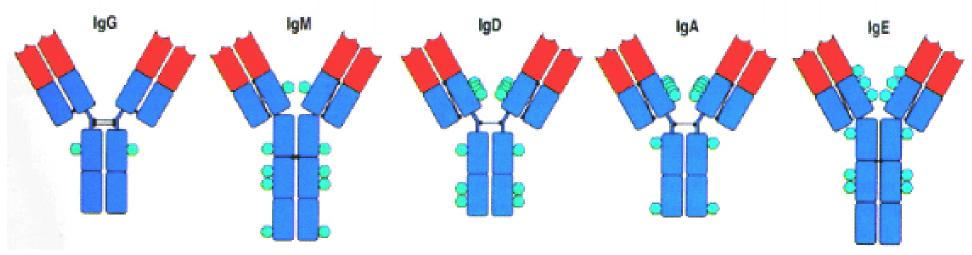
- A substance that introduced to the body that induces the formation of antibodies
- Usually proteins located in the membranes of microorganisms or the outer coats of viruses
- Antigenic Determinants
 - Variously shaped, small regions on the surface of the antigen molecule (epitope)
 - Each kind of antigen has specific and uniquely shaped epitopes

Antibody-Mediated Immunity

- Antibodies
 - Plasma proteins (Immunoglobulins) secreted by B cells
- Combining sites
 - Two small concave regions on the surface of the antibody
 - Like epitopes, have specific and unique shapes
 - Shaped to allow the epitope of the antigen fit into it and thereby bind to form a antigen-antibody complex
- Clone
 - The genetic descendant of a cell
- Complement
 - A group of proteins that work together to destroy foreign cells, can be activated by antibodies



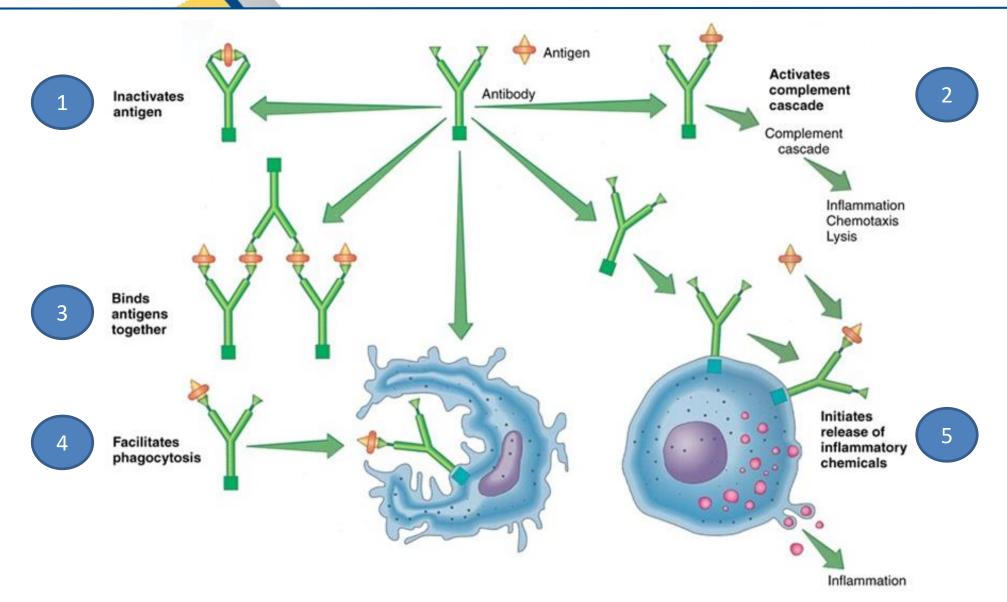
- Proteins of the Immunoglobulin family
- Large molecules composed of long chains of amino acids (polypeptides)
- Consists of four polypeptide chains
 - 2 Heavy
 - Twice as long and heavy
 - Has one variable and three constant regions
 - 2 Light
 - Has one variable and one constant region
- Formed to give a Y shape appearance
- Disulfide bonds join the 2 heavy chains to each other and their adjacent light chain
- Antigen-binding sites are located at the top of the variable regions
- Complement binding sites found in the constant regions



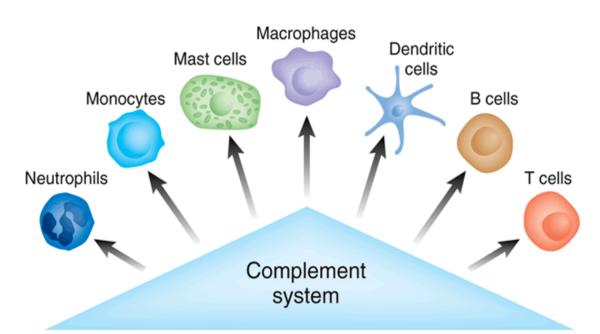
Antibodies

Antibody Classes

- IgM
 - Produced by immature B cells and inserted into plasma membranes
 - Predominate antibody produced after initial contact with an antigen
- IgG
 - Most abundant circulating antibody (75%)
 - Predominate in a secondary exposure
 - Cross the placenta barrier to provide natural passive immunity
- IgA
 - Found in the mucous membranes, in saliva, tears, and breastmilk


- IgE
 - Minor in amount
 - Can produce major effects (allergies)
- IgD
 - Found in blood in small amounts (unknown function)

- Function to produce antibody-mediated immunity (humoral immunity)
- Antigen-Antibody reactions
 - Antibodies distinguish self-antigen and nonself-antigens at the binding site
 - This binding causes 5 main outcomes:
 - Transforms toxins into nontoxic substances
 - Exposes the complement-binding sites initiating the complement reaction
 - Agglutinates antigens (clumps) for phagocytic disposal
 - Facilitates phagocytosis (provides a handle for the white blood cells)
 - Initiates release of inflammatory chemicals



Antibodies

Antibodies

Innate immunity

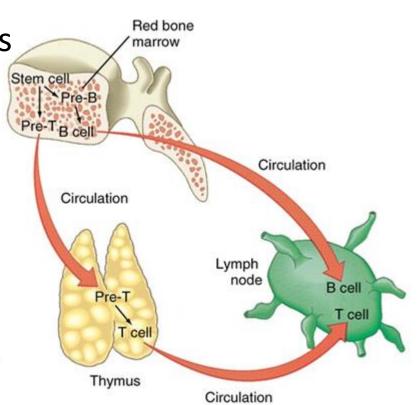
Opsonization
Lysis of pathogens
Chemotaxis
Inflammation
Cell activation

Disposal system

Clearance of immune complexes and apoptotic cells

Adaptive immunity

Augmentation of antibody response
Promotion of T-cell response
Elimination of self-reactive B cells
Enhancement of immunologic memory

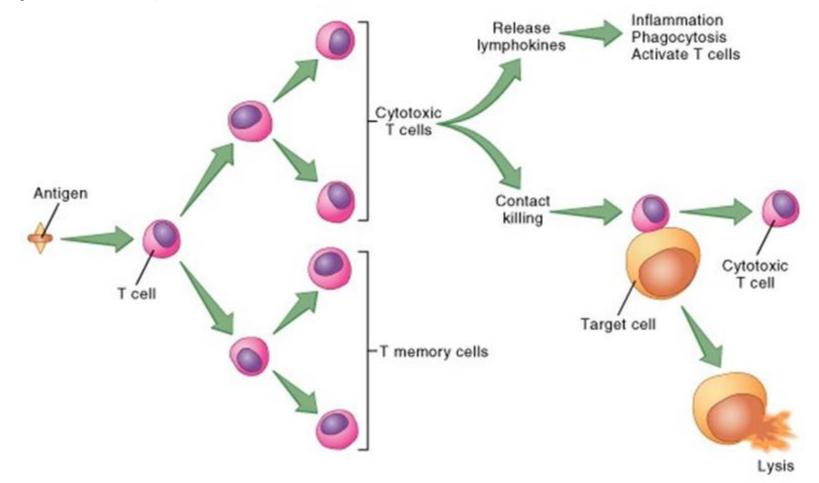

Complement

- Component of blood plasma
- Are inactive enzymes that are activated in a definitive sequence to catalyst a series of reactions
 - The reactions are produced as proteins react with the complement-binding site
 - Molecules produce by the reactions assemble on the surface of the foreign cell to form a donut-shaped structure
 - Water and ions are diffused into the cell and cause cytolysis
- Various complement proteins may produce other reactions
 - Vasodilatation in the invaded area
 - Attract Neutrophils and enhance phagocytosis

Cell-Mediated Immunity

- T cells are lymphocytes that have passed through the thymus gland where they learn to distinguish between self and foreign antigens
- Pre-T cells are released from bone marrow
- Pre-T cells develop into thymocytes in the thymus
- Thymocytes are rapidly reproduced (can divide 3
 - 4 times a day)
- Once released into the blood from the thymus they locate in areas of the lymph nodes and spleen (T-dependant zones)
- Now they are T cells

- T cells have antigen receptor sites (T cell receptors) on their membrane
- Dendritic cells phagocytose pathogens in the tissues and present antigens to the T cell receptor on the T cell
- Binding activates (sensitizes) the T cell causing it to divide and produce clone cells (activated T cells)
- These T cells will be either:
 - Cytotoxic T cell
 - Kills infected or cancerous human cells on contact
 - Helper T cell
 - Helps B cells make antibodies and helps innate cells kill pathogens



- T cells do not directly kill bacteria or viruses
 - Killer T cells kill virus infected human cells or cancer cells
 - Helper T cells help macrophages phagocytose bacteria
 - Helper T cells help B cells make antibodies to target bacteria or viruses for disposal

Killer (cytotoxic) T cells in action:

Specific Immunity - Memory

- Some memory lymphocytes of each type (cytotoxic T cells, helper T cells, and B cells) can be saved for future encounters with the same pathogen
- This provides a memory for both:
 - Cell-mediated immunity
 - Memory Helper T cells
 - Memory Killer T cells
 - Antibody-mediated immunity
 - Memory B cells
- Innate immune cells (neutrophils, macrophages, and dendritic cells) don't have memory
- Immunologic memory is the principle that makes vaccination possible

Specific Immunity

Inherited Immunity

Also known as Inborn Immunity

Acquired Immunity

- Natural (Exposure to the causative agent is not deliberate)
 - Active (exposure)
 - Exposure to infection (measles) and produces immunity
 - Passive (exposure)
 - Received from mother through the placenta barrier or through breast milk
- Artificial (Exposure is deliberate)
 - Active (exposure)
 - Vaccinations
 - Passive (exposure)
 - Antibodies that are produced by another immune system (e.g. Anti-venoms are typically horse or sheep antibodies that neutralize the venom toxins)

Canadian Pediatric Society Routine Vaccine Schedule for healthy children and adolescents

Age:	Vaccines							
	DTaP/IPV	Hib Haemophilus influenza type b vaccine	MMR	HBV	dTap	VZV	PCV-7	MenC- conjugate
At 2 months	X	X		X			X (@ 2/3 mos)	X (@ 2/3 mos)
At 4 months	X	X		X			X (@ 4/5 mos)	X (@ 4/5 mos)
At 6 months	X	X		X			X (@ 6/7 mos)	X (@ 6/7 mos)
At 12 months			X			X	X (@12-15 mos)	
At 18 months	X	X	and X	or				
At age 4-6 years	X		or X	X 3 doses				
Teenage years				@ 0, 1 & 6 mos	dTap at 14-16 years			
Adult years				at any age	dT every 10 years			