MEDAVIE HealthEa ÉduSanté

THE BODY'S DEFENSE AND
CHANGES WITH DISEASE AND

INJURY

Primary Care Paramedicine

Module: 16

Section: 02b

- Case approach to understanding physiological changes with disease.
- Cellular response to change and injury.
- Genetics and other causes of disease.
- Infectious agents
- The body's response to infection

- Dispatched for a 36 y/o M C/O an inability to weight bare on his left leg.
- Patient is homeless and currently with police who called for EMS assessment.
- On arrival the patient is seated on the rear bumper of a police van with wet, extremely damaged footwear.
- VS: HR 130, BP 90/54, T 37.0°C, BGL 16.2 mmol/L, RR 24, SpO₂
 94% on room air.
- Broad differential diagnosis?

- Terminology recap:
 - Pathology
 - The study of disease and its causes
 - Pathophysiology
 - The study of how diseases alter normal physiology

The Body's Defence and Changes with Disease and Injury

CELLULAR CHANGE AND ADAPTATION

- Cells, tissues, organs and organ systems can adapt to both normal and injurious (pathological) conditions.
 - Ex. growth of the uterus during pregnancy is a response to a normal condition.
 - Ex. dilation of LV post MI is response to a pathological condition.
- When stimulated by external stressors, the body undergoes cellular adaptations that results in alteration of structure and function.

Atrophy

- Decreased size resulting from a decreased workload.
- Can also occur as a result of lack of stimulation, decreased nutrient/blood supply and/or ischemia

Hypertrophy

- An increase in cell size resulting from an increased workload
- Thought to occur in cells that are unable to increase in # (hyperplasia), therefore increase in mass with increased workload
 - ex. LVH secondary to chronic HTN

Hyperplasia

- An increase in the number of cells resulting from an increased workload.
- Commonly occurs in conjunction with hypertrophy

Metaplasia

- Replacement of damaged cells of one type by a different type of cell that is not normal for that tissue.
 - Ex. Replacement of ciliated columnar epithelial cells of the trachea with stratified squamous cells secondary to chronic cigarette smoking.

Dysplasia

- A change in cell size, shape, or appearance caused by an external stressor.
- Related to hyperplasia, typically an abnormal/atypical hyperplasia.

- Hypoxia
- Chemicals
- Physical agents
- Nutritional factors
- Genetic factors
- Infectious Agents
- Immunological/Inflammatory reactions

- Hypoxia
- Chemicals
- Physical agents
- Nutritional factors
- Genetic factors
- Infectious Agents
- Immunological/Inflammatory reactions

Hypoxia

- The most common cause of cellular injury
- Blockage or reduction of oxygenated blood to cells results in cellular ischemia
- Cells can no longer undergo aerobic metabolism, therefore switch to anaerobic
- Results in increased production of lactate
- Leads to destruction of Na⁺/K⁺ pumps resulting in increased intracellular Na⁺ concentration
- Leads to fluid shift and cellular swelling

Hypoxia

- If oxygen is not supplied to tissue, process will continue and cell membranes will rupture
- Causes spillage of harmful enzymes into interstitial space
- Cellular injury now considered irreversible
- This is now cellular/tissue death = infarction

Fatty change

- In addition to cellular swelling, cellular injury can also result in fatty deposits
- During the process, lipids invade the area of injury
- Causes a disruption of the cellular membrane and metabolism, interfering with the vital functions of the organ.
- Occurs most commonly in vascular organs, most frequently the liver.
 - ex. NAFLD

- Hypoxia
- Chemicals
- Physical agents
- Nutritional factors
- Genetic factors
- Infectious Agents
- Immunological/Inflammatory reactions

Chemicals

 Harmful chemicals can disrupt cellular membranes, alter coagulation and cause cell death

Physical agents

 Extremes of temperature and pressure, radiation, noise and/or trauma can all damage cells/tissue.

- Hypoxia
- Chemicals
- Physical agents
- Nutritional factors
- Genetic factors
- Infectious Agents
- Immunological/Inflammatory reactions

Nutritional factors

- Improper nutrition increases risk for atherosclerosis, DM and vitamin deficiencies.
- Leads to hormone imbalances and metabolic derangements, eventually causing cellular injury

Genetic factors

- Genetic variances can result in changes to protein synthesis.
- Results in modification of cellular structure and therefore function.
 - Ex. Sickle cell disease

- Hypoxia
- Chemicals
- Physical agents
- Nutritional factors
- Genetic factors
- Infectious Agents
- Immunological/Inflammatory reactions

Infectious Agents

- Common cause of cellular injury
- Most infectious agents are harmless
- Those that cause infection or disease are called Pathogens

- Types include:
 - Bacteria
 - Viruses
 - Fungi
 - Prions
 - Other parasites

 Single-cell organisms with a cell membrane and cytoplasm but no organized nucleus.

Cause many common infections, and usually respond to

antibiotic treatment.

Bacteria release toxins.

- Exotoxins are secreted during bacteria growth.
- Endotoxins are released when the bacteria dies.

- Smaller than bacteria and cause most infections.
- No organized cellular structure except a protein coat (capsid) surrounding the internal genetic material (RNA or DNA). Some have an outer envelope.
- Viruses do not produce toxins.
 - They replicate and may cause a malignancy.
 - They may attack immune cells and destroy the ability to ward off infection.

Other Agents of Infection

Prions Fungi **Parasites** Don't usually cause anything Most recently recognized class More common in developing more serious than minor skin of infectious agents. nations Misfolded proteins that • Treatment depends on the infections Typically opportunistic propagate and have harmful organism and its location pathogens activities

- Hypoxia
- Chemicals
- Physical agents
- Nutritional factors
- Genetic factors
- Infectious Agents
- Immunological/Inflammatory reactions

Innate (Non-Specific) Immunity

- Rapid onset to attack foreign pathogens
- Generic, non-specific, response
- No ability to 'remember' pathogens for later exposure
- Provides initial rapid response to allow time for the adaptive response to develop

- Epithelium
- Sebaceous glands
- Sweat, tears, saliva
- Mechanical responses:
 - Respiratory: mucus, surfactant
 - Gastrointestinal: gastric acid, bile, gut flora

- Begins within seconds of injury or invasion by a pathogen.
- Nonspecific
- Mediated by multiple plasma protein systems
 - Coagulation system
 - Kinin system
 - Release of leukotrienes, prostaglandins

More later in presentation...

- Biochemical pathway that, once initiated, enhances ability of Ab and Phagocytes
- Nonspecific
- Pro-proteins (inactive) synthesized by the liver and are present at all times in bloodstream in inactive form
 - Activation can occur rapidly

- Various Leukocytes produce a rapid, non-specific response
 - NK cells: attack virus infected cells and tumors
 - Mast cells: release Heparin and Histamine
 - Macrophages: large phagocytic cells
 - Neutrophils: produce oxidizing agents (H₂O₂) to destroy bacteria and fungi
 - Dendritic cells: assist in presentation of antigens to the surface for marking

Adaptive (Specific) Immunity

- Develops more slowly
- Consists of non-specific and specific responses
- Specific
 - Will develop a specialized response for an individual invader
- Mediated by one plasma protein system
 - Immunoglobulin

 Humoral immunity is the long-term immunity to an antigen provided by antibodies produced by B lymphocytes.

Humoral Immunity

 Once the Ab are present, future exposure to the same pathogen eludes a more rapid response.

 Cell-mediated immunity is immunity to an antigen provided by T lymphocytes that help phagocytes and B cells or directly kill infected cells.

- Helper T cells Assist other components
 - Assist B cells to differentiate into plasma cells
 - Assist cytotoxic T cells
- Cytotoxic (Killer) T cells destroy virus infected or tumour cells
- Memory T cells antigen specific cells that retain memory of pathogen
- Suppressor T cells help to 'turn off' response when not needed

The Body's Defence and Changes with Disease and Injury

IMMUNITY

- Natural immunity is part of genetic makeup
- Artificial immunity develops as a result of a deliberate action.
- Active immunity is generated by the immune system after exposure to an antigen
- Passive immunity is transferred to a person from an outside source.

Immunity Types

Copyright © 2015 Pearson Education, Inc.

The Body's Defence and Changes with Disease and Injury

INFLAMMATORY RESPONSE

The Acute Inflammatory Response

- Key activators of the inflammatory response.
- Activate the inflammatory response through degranulation and synthesis of immune mediators.

- Process by which mast cells empty granules from their interior into the extracellular environment.
- Occurs when the mast cell is stimulated by one of the following:
 - Physical injury
 - Chemical agents
 - Immunologic and direct processes

Biochemical Agents Stored and Released During Degranulation

- Vasoactive amines
 - Ex. Histamine
- Chemotactic factors
 - ex. Bradykinin, etc.
- Heparin

- Mast cells construct substances that play important roles in inflammation:
 - Leukotrienes
 - Prostaglandins
- Prostaglandin synthesis results in pain and fever
 - Synthesis involves Cyclooxygenase 1 & 2 pathways
 - Which medications block this?

Chronic Inflammatory Responses

- Defined as inflammation that lasts longer than 2 weeks.
 - Neutrophils continue to degranulate and die.
 - Lymphocytes infiltrate.
 - Fibroblasts secrete collagen.
 - Pus is produced and self-di
 - A granuloma may form.
 - Tissue repair.
 - Scar formation.

Macrophage

- Local inflammatory symptoms result from:
 - Vascular changes
 - Redness, swelling, heat and pain
 - Exudation
 - Dilutes the toxins released by bacteria and toxic products of dying cells
 - Brings plasma proteins and leukocytes to the site to attack the invaders
 - Carries away the products of inflammation, e.g. toxins, dead cells, pus.

- Systemic Inflammatory Responses Syndrome (SIRS)
 - Progression of a localized infection to a more serious, systemically involved response
 - Results in:
 - Fever
 - Leukocytosis
 - Increased circulating plasma proteins

SIRS Criteria

- Body Temperature: > 38°C or < 36°C</p>
- Heart Rate: > 90 bpm
- Respiratory Rate: > 20 rrpm
- WBC: > 12 x 109cells/L or < 4 x 109cells/L</p>

Two or more criteria results in a patient that is SIRS positive

Sepsis Spectrum

SIRS

- 2 or more of:
- •Temp above 38°C or below 36°C; HR > 90; RR > 20

Sepsis

- Suspicion of infection PLUS
- 2 SIRS criteria

Severe Sepsis

• Sepsis with signs of hypoperfusion (e.g. decreased urine output, hypoxia, cardiac or acute lung dysfunction, altered mental status, etc)

Septic Shock

- Severe sepsis PLUS
- Hypotension (SBP < 80 mmHg)

- When localized cellular injury spreads and chemical mediators enter the bloodstream, systemic effects are felt.
- Common presenting S/S associated with systemic involvement include:
 - Fatigue and malaise
 - Altered appetite
 - Fever
 - Increased heart rate
 - Pain

- Eventually if cause of cellular injury is not fixed, cellular death will occur.
- This occurs via one of two mechanisms:
 - Apoptosis
 - Necrosis

- Programmed cell death
- Highly regulated process
 - Ex. cell death of tissue between fingers during embryonic development.
- Typically occurs if cell is stressed in any way (injury, infected)
- Injured cell releases enzymes that engulf and destroy the cell
- Eliminating damaged and dead cells allows tissues to repair and possibly regenerate

- Always a pathological process
 - Traumatic cell death
 - Result of infection, toxins, trauma

- Types of necrotic cell death
 - Coagulative
 - Liquefactive
 - Caseous
 - Fatty
 - Fibrinoid
 - Gangrenous

- Type of necrosis caused by ischemia and subsequent infarction.
- Denatures proteins and lysozymes
 - Blocks proteolysis of damaged cells
 - Leads to inability to "self-fix" damage

- Typically a result of bacterial or fungal infections
- Hydrolytic enzymes digest dead cells leaving mix of pus
 - Yellow pus color result of dead leukocytes
 - Common in the CNS

Caseous Necrosis

- White-coloured proteinaceous dead-cell mass
- Dead tissue appears cheese-like
- Combination of Coagulative and liquefactive forms

- Specific to adipose (fatty) tissue
- Lipase digest TG to FA
 - FA combine with Ca²⁺
 - Soaps form which result in white, chalky deposits in tissue
 - Common post pancreatic trauma

- Deposits of immune complexes (Antigen-Ab complex) and fibrin in tissue, typically vasculature walls
- Common with immune vasculitis and preeclampsia

Fibrinoid necrotic vessel wall

Gangrenous Necrosis

- Not a specific type but rather a wide spread progression of other necrosis types
- Can be caused by injury or illness
- Resembles mummified tissue

- Types
 - Dry gangrene
 - Wet gangrene
 - Gas gangrene
 - Necrotizing fasciitis

- Rapid progression, easier in immunocompromised patients
- A.K.A. "Flesh-eating disease"
- Deep tissue, into fascia
- Secondary necrosis of subcutaneous tissue also occurs.

- MODS is the progressive impairment of two or more organ systems from an uncontrolled inflammatory response to a severe illness or injury
 - Found in acutely ill patients in which some external intervention is required to maintain homeostasis
- Also known as multiple organ failure, multiple system organ failure

The Body's Defence and Changes with Disease and Injury

MODS STAGES

- Organ damage results directly from a specific cause such as ischemia or inadequate tissue perfusion from shock, trauma or major surgery.
- Stress and inflammatory responses may be mild and undetectable
- During this response, neutrophils, macrophages, and mast cells are released

- Often occurs weeks after initial insult
- The host's inflammatory response enters a self-perpetuating cycle causing damage and vasodilation.
- An exaggerated neuroendocrine response is triggered causing further damage.

24 Hours After Resuscitation

- Low grade fever
- Tachycardia
- Dyspnea
- Altered mental status
- General hypermetabolic, hyperdynamic state

Pulmonary failure begins

- Hepatic failure begins
- Intestinal failure begins
- Renal failure begins

- Renal and hepatic failure intensify
- Gastrointestinal collapse
- Immune system collapse

- Hematologic failure begins
- Myocardial failure begins
- Altered mental status resulting from encephalopathy
- Death

- The cell
- Types of tissue
- Disease causes
- Disease pathophysiology