

Advanced Airway Care (RSI)

- Advanced airway control
- Facilitate intubations
- For conscious clenching patients and patients with an intact gag reflex
- No mechanical ventilation necessary
- Decrease vomiting
- Maintain patent airway

- Patients requiring sedation for procedure
- Patients unable to maintain airway
- Patients unable to oxygenate to sufficient levels
- Patient in danger of losing airway
- Predicted obtainable airway

Contraindications

- Lack of indications
- Cardiac arrest
- Indications for immediate airway control
- Predicted difficult airway
 - Tracheal Edema
 - Obstruction
 - Epiglottitis
 - Poor Mallampati

- Preparation
- Pre-oxygenate
- Pretreatment
- Paralysis (sedation)
- Placement
- Post intubation management

Preparation

- Suction
- Laryngoscope
 - Blades
- Oxygen (BVM)
- Pillow
- Endotracheal Tube
- Stylet
- Spare endotracheal tubes
- Securing tape/twill
- Syringe

- End-tidal CO₂ Detector
- Toomey Syringe

- Rescue Airways
 - Bougie
 - Surgical

- Pre-oxygenate (nitrogen washout)
 - 100% NRB
 - Monitor O₂ saturations
 - Do not Ventilate via BVM
 - Minimizes gastric distention

How much time do I have?

- 70 kg adult maintains O₂ Sat >90% for 8 min
 - From 90% 0% = < 120 seconds
- Obese adult (>120 kg) desaturate to 0% in less than 3 min
- 10 kg child desaturate < 90 in 4 min
 - From 90% to 0% in 45 seconds

Pretreatment

- "LOAD" the patient
 - Lidocaine
 - Opioid
 - Atropine
 - Defasiculating Dose of NMB

- Class 1B anti-arrhythmic
 - Has been used as an adjunct since the early 1960's

Premise

- Laryngoscopy and Intubation
 - Afferent stimulation in post pharynx/ larynx
 - Increased central stimulation
 - Increased ICP
 - Stimulation of autonomic system
 - Increased HR / BP
 - Upper and lower respiratory tract leading to increased airway resistance

- Literature (controversial)
 - Suppresses cough reflex
 - Attenuates increase in airway resistance (from ET tube irritation)
 - Prevents increased ICP
 - Prevents increased IOP
 - Decreases dysrhythmias by 30 40%
 - Use to attenuate sympathetic response to laryngoscopy (not supported by literature)

• Dose: 1.5 mg/kg

Topical 4% Lidocaine and ICP ????

- Used to blunt systemic response
 - Morphine
 - Dose: 5 10 mg IVP
 - Fentanyl
 - Dose: $2-3 \mu g/kg (50-100 \mu g)$
- Possible SE's of opiod administration
 - Potential rise in ICP (6 10 mmHg)
 - Associated with a decrease in MAP and CPP
 - May cause muscle rigidity (wooden chest syndrome)
 - Mechanism is unclear
 - Usually cleared with administration of NMB's

Beta Blockers

- Beta-blockers
 - Will decrease sympathetic response
 - Esmolol (β-1 cardioselectivity)
 - 2 mg/kg bolus
 - Effective at limiting rises in HR, systolic BP, and MAP, but it has little effect on diastolic pressure.
 - Problems:
 - » Negative inotrope
 - » Bronchioconstriction (especially in patients with underlying reactive airway disease)
 - Children are more prone to a bradycardic response to intubation, beta-blockers should generally be avoided in younger patients.

- Acts as antimuscarine to minimize vagal effects
 - Infants and Children are more susceptible to vagal nerve stimulation
 - Can be worsened with hypoxia
- Dries oral secretions
- Use with Succinylcholine in children under the age of 8 and when giving repeat doses
 - Repeat doses may cause Sinus Bradycardia, Junctional or Sinus Arrest since Succinylcholine mimics action of Ach at the cardiac muscarinic receptors
- Dose 0.02 mg/kg (no less than 0.1mg max 1.0 mg), 3 min prior to induction

Defasiculation

- Prior to Succinylcholine administration to minimize
 - Injuries from fasiculations
 - Rise in ICP from Succinylcholine induced fasciculation (animal data, limited human)
 - Does not attenuate the sympathetic response to intubation
 - Does not attenuate the increase in airway resistance with intubation
- 1/10th intubating dose of non-depolarizing NMB
 - Rocuronium
 - Pancuronium
 - Vecuronium

Paralysis (sedation)

- Induction phase is to performed to produce sedation and anaesthesia
 - Benzodiazepines
 - Barbiturates
 - Etomidate
 - Ketamine
 - Propofol
 - Neuromuscular Blockers

Benzodiazepines

- Sedative-hypnotic agent
 - Act as gamma-aminobutyric acid (GABA) agonists
 - Effective anxiolytic and amnestic agents
 - Midazolam
 - 2.0 5.0 mg IVP
 - Valium
 - 2.0 5.0 mg IVP

Health Ed ÉduSanté

Barbiturates

- Also act at the GABA receptor to produce anaesthesia and sedation
- Sodium thiopental
 - Lipid soluble and cross the blood-brain barrier rapidly
 - 3 5 mg/kg IVP
 - Beneficial effects
 - Blunting the hemodynamic response to intubation
 - Decreasing CNS metabolism
 - Detrimental effects
 - Potent negative inotropes and vasodilators causing significant hypotension
 - Histamine release
 - Bronchospasm

- Similar to thiopental, but is non-barbiturate
- Rapid onset and brief duration of action
 - Has the added benefit of remarkable hemodynamic stability
 - Decreases cerebral metabolism and blood flow without affecting CPP
- 0.1 0.4 mg/kg IVP
- Myoclonus (jerky muscular contractions) may be seen after administration

Health Edu Santé

Ketamine

- Dissociative anesthetic derived from phencyclidine (PCP)
- Usually seen with the sedation of children
- 1- 2 mg/kg IVP
- Does not produce a true unconscious state because reflexes, including spontaneous respirations, may be preserved
- As a dissociative agent can produce unpleasant emergence reactions, such as disturbing dreams and hallucinations, as it wears off
 - Generally a concern when used for conscious sedation; rarely an issue with long-term sedation is used following successful intubation
- Sympathomimetic activity can produce significant tachycardia and hypertension
- Increases cerebral metabolism, ICP, and cerebral blood flow
- Beneficial when intubating patients with status asthmaticus
 - Direct bronchodilatory properties

- Short-acting hypnotic agent
 - Reduces cerebral metabolism and blood flow
 - May offer bronchodilatory properties
 - Significantly decreases MAP
 - Cardiac depressant
- 2 3 mg/kg IVP

Succinlycholine

Depolarizing NMB

- Adult: 0.5 - 1.5 mg/kg

- Ped: 1.5 - 2.0 mg/kg

- Rapid onset, short duration
- May cause malignant hyperthermia

Non-depolarizing NMB's

- Pancuronium
 - -0.04 0.1 mg/kg
- Vecuronium
 - -0.08 0.1 mg/kg
- Rocuronium
 - -0.6 0.8 mg/kg

- Use of BURP or Sellick's Maneuver
- Perform direct laryngoscopic intubation
 - Confirm placement

Post Intubation Management

- Secure tube
- Ventilate
- Monitor patients status
- Maintain sedation/paralysis

- Failure to adequately preoxygenate to achieve nitrogen washout
- Failure to allow adequate time between pretreatment and intubation
- Failure to recognize the patient with hemodynamic instability

Capnography

- Capnography is the vital sign of ventilation
- Tracking the CO₂ in a patient's exhaled breath, capnography enables paramedics to objectively evaluate a patient's ventilatory status (and indirectly circulatory and metabolic status)
- A capnograph measures how much carbon dioxide is present in the patients breath

Definitions

- Capnography
 - Measurement of CO₂ in exhaled breath
- Capnometry
 - Measurement of partial pressure of expired CO₂
- Capnometer
 - Numeric measurement of CO₂
- Capnogram
 - "Real-time" visual waveform of ETCO₂
- End Tidal CO₂ (ETCO₂ or P_{ET}CO₂)
 - Level of (partial pressure of) carbon dioxide released at end of expiration
 - Normal value: 35 45 mmHg

Capnography

Colormetric Devices

- Disposable
- Detect exhaled CO₂ with litmus paper
 - H⁺ ions in CO₂ cause change in color
 - of paper
 - Color change present between each breath
 - Manufactured in protective plastic housing
 - Placed between vent circuit and endotracheal tube
- Not useful in detecting hyper/hypocarbia

Electronic Devices

- CO₂ absorbs light at specific wavelength
 - Allows for measurement
- Can be qualitative or quantitative
 - Qualitative
 - Detect presence of CO₂
 - Quantitative
 - Determine how much CO₂
 is present

Oxygenation versus Ventilation

Oxygenation

- Oxygen is inhaled into the lungs where gas exchange occurs at the capillary-alveolar membrane
- Oxygen is transported to the tissues through the blood stream
- Pulse oximetry measures oxygenation

Ventilation

- CO₂ is carried back through the blood and exhaled by the lungs through the alveoli
- Capnography measures ventilation

Capnography versus Pulse Oximetry

- Capnography provides an immediate picture of patient condition.
- Pulse oximetry is delayed.
- Capnography will show immediate apnea, while pulse oximetry will show a high saturation for several minutes.

Circulation and Metabolism

- Capnography is a direct measurement of ventilation in the lungs, it also indirectly measures metabolism and circulation
 - Increased metabolism will increase the production of carbon dioxide increasing the ETCO₂
 - Decrease in cardiac output will lower the delivery of carbon dioxide to the lungs decreasing the ETCO₂
 - ETCO₂ reflects changes in cardiac output and pulmonary blood, not ventilation

P_aCO₂ versus P_{ET}CO₂

- Normal ETCO₂ 1–2 mmHg <CO₂
- P_aCO₂
 - Partial Pressure of Carbon Dioxide in arterial blood gases
 - Measured by drawing the ABGs
- If ventilation and perfusion are stable P_aCO₂ should correlate to P_{FT}CO₂
- If ventilation or perfusion are unstable, a Ventilation/Perfusion (V/Q) mismatch can occur. This will alter the correlation between P_aCO₂ and P_{ET}CO₂

Main-stream Capnograph

 CO₂ sensor located between endotracheal tube and breathing circuit

Main-stream Capnograph

Advantages

- No sampling tube No obstruction
- No affect due to pressure drop
- No affect due to changes in water vapor pressure
- No pollution
- No deformity of capnogram due to non dispersion of gases
- No delay in recording
- Suitable for neonates and children

Disadvantages

- Sensors are light weight minimizing traction on the endotracheal tube
- Sensor windows may clog with secretions.
- Difficult to use in unusual patient positioning such as in prone positions.
- The newer versions use disposable sensor windows thereby eliminating sterilization problem

Side-Stream Capnographs

 Sensor is located in the main unit and CO₂ is aspirated via a sampling tube connected to a T-piece adapter located between endotracheal tube and breathing circuit.

Side-Stream Capnographs

Advantages

- Easy to connect
- No problems with sterilization
- Can be used in awake patients
- Easy to use when patient is in unusual positions such as in prone position
- Can be used in collaboration with simultaneous oxygen administration via a nasal prong

Disadvantages

- Delay in recording due to movement of gases from the ET to the unit Sampling tube obstruction
- Water vapor pressure changes affect CO₂ concentrations
- Pressure drop along the sampling tube affects CO₂ measurements

- The capnograph is a trace of CO₂ levels over time.
- As the CO₂ levels at the sampling point fall and rise over time due to inspiration and expiration, you get a capnograph trace.

- Monitor will show a capnograph waveform as well as ETCO₂
 - Waveform shows the amount of CO₂ in the patients breath
 - ETCO₂ is the measurement of CO₂ in the breath at the end of expiration

- Monitor Screen
 - Compressed time

- Print
 - Waveform appears more drawn out, is in real time

- The lines near the baseline represent inspiration and the higher lines represent expiration.
- In reality, expiration begins slightly at a different place to what has been shown to you before

Capnogram

Phase I

- Respiratory baseline
- Flat
 - No CO₂ present
 - Corresponds with late inspiratory/early expiratory part of respiratory cycle

Phase II

- Respiratory upstroke
- Mixture of dead space and alveolar gases

Phase III

- Respiratory plateau
- Represents air from ventilated alveoli
- Nearly constant CO₂ level
- Highest point = ETCO₂
 - Recorded by capnometer

Phase IV

- Inspiratory phase
- Sudden down stroke to baseline as atmospheric air is inspired

Abnormal Values

- Normal ETCO₂ = 35 45 mmHg
- ETCO₂ < 35 mmHg = Hyperventilation/Hypocapnia
- ETCO₂ > 45 mmHg = Hypoventilation/Hypercapnia

Caution: "An ETCO₂ reading without a waveform is like a heart rate without an ECG recording." – Bob Page "Riding the Waves"

Clinical Uses of Capnography

Clinical Applications

- Confirmation of endotracheal tube placement
- Continuous monitoring of endotracheal tube placement
- Trend monitoring in nonintubated patients
- Evaluating effectiveness of CPR

Monitoring Ventilation

- Capnography monitors patient ventilation, providing a breath by breath trend of respirations and an early warning system of impending respiratory crisis
 - Hypoventilation
 - Hyperventilation

Monitoring Ventilation

Hypoventilation

- − When a person hypoventilates, their CO₂ goes up.
- Can be caused by altered mental status (OD, sedation, intoxication, postictal states, head trauma, or stroke, or by a tiring CHF patient)
- Other reasons CO₂ may be high include Increased cardiac output with increased breathing, fever, sepsis, pain, severe difficulty breathing, depressed respirations, chronic

hypercapnia

Monitoring Ventilation

Hyperventilation

- When a person hyperventilates, their CO₂ goes down.
- Can be caused by many factors (Anxiety, bronchospasm, PE).
- Other reasons CO₂ may be low include cardiac arrest, decreased cardiac output, hypotension, cold, severe pulmonary edema

Straight Line

- Some possible reasons:
 - Capnograph is not connected
 - Esophageal intubation
 - Complete obstruction of:
 - Lungs (e.g. very severe bronchospasm leading to complete obstruction)
 - Airway (e.g. tracheal tube obstruction)
 - Capnograph sampling tubing
 - Respiratory arrest
 - Cardiac arrest

Sloping Expiratory Tracing

- "Shark Fin"
- Some possible reasons:
 - Partial obstruction of lungs (bronchospasm, COPD)
 - Partial obstruction of airway (e.g. tracheal tube secretions, kinking)

Deep Suction

Any suction performed past the oropharynx typically via ETT

Removal of endotracheal foreign bodies as demonstrated by fluid/obstruction visualized or increasing PiP

- Suction Catheter (2 X ETT = size in Fr)
- Normal Saline
- Suction Unit (80-100mmHg)
- PPE

- o Pre-oxygenate
- o Prepare equipment in sterile field
- o NS (approx 5ml) can be instilled down ETT if thick secretions are present
- Insert catheter until pt. coughes, or resistance is met
- o Apply suction and withdraw
- o Procedure should last no more than 15 secs.

Complications

- Hypoxia
- Vagal Stimulation
- Infection
- Soft Tissue Injury (Carina, Main-stem Bronchus)

- Have proper equipment prepared
- Pre-oxygenate when possible
- Assess for side affects
- Keep procedure as sterile as possible