

- Hemodynamic monitoring important aspect of critical care medicine
- Subtle changes in hemodynamic parameters often earliest indications of patient deterioration
- Patients often transported with monitors and in-dwelling catheters

Value of Hemodynamic Monitoring

- Understand common critical care monitoring devices
- Interpret changes
 - Allows the critical care paramedic to:
 - Identify and appreciate trends
 - Determine treatment effectiveness

Commonly Monitored Parameters

- Electrocardiogram
- Arterial blood pressure
- Central venous pressure
- Cardiac output
- Pulmonary capillary wedge pressure
- Stroke volume
- Oxygen delivery

Electrocardiographic Monitoring

- 12-Lead ECG monitoring and interpretation now common in prehospital environment
- Principles of 12-lead monitoring similar to routine cardiac monitoring
- 12-Lead ECG designed to detect most common cardiac insults

Arterial Blood Pressure

- One of the most important physiologic measurements in medicine
 - Also one of the most unreliable

Measurement with sphygmomanometer unreliable

Indirect (Noninvasive) Pressure Monitoring

- Sphygmomanometer
 - Multiple sources of error
 - Inappropriate size cuff
 - User error
 - Environmental distractions
 - Usually adequate for most situations
 - Critical care patient requires more accurate arterial blood pressure determination

Direct (Invasive) Pressure Monitoring

- More involved than noninvasive pressure monitoring
 - Invasive procedure
 - Requires sophisticated equipment
 - Catheter
 - Transducer
 - Oscilloscope or graph

Arterial Catheter

- Filled with heparinized saline
- Serves as a fluid column between blood and transducer
- Transmits pressure from pulse

- Receives pressure from pulse and produces weak electrical signal
- Amplifier commonly used to strengthen signal

Oscilloscope or Graph

- Displays signal from transducer
- Electric monitor commonly used

Electronic Monitor Displays

- Pressure waveform
- Numerical values for:
 - Systolic pressure
 - Diastolic pressure
 - Mean arterial pressure (MAP)
 - Frequent calibration and maintenance required

Leveling and Zeroing of Transducer

- Zero reference point at phlebostatic axis
 - Level of right and left atrium when patient supine
- Transducer is zeroed by exposing the pressure transducer to atmospheric air
 - Open three-way stopcock so it is closed to patient and the transducer is open to atmospheric air
 - Zeroing function on monitor activated
 - System left untouched until flat line appears on monitor
 - Three-way stopcock opened to patient and blood pressure measured
- System should be zeroed any time patient position changes

Arterial Waveform

- Rapid upstroke
 - Rapid ejection of blood from left ventricle into aorta
 - Follows QRS complex on ECG
- Dicrotic notch
 - Slight backflow of blood in aorta after closure of aortic valve
 - End of ventricular systole
 - Corresponds with end of ventricular repolarization
 - T wave on ECG
- Value measured at peak of waveform is systolic pressure
- Value measured at trough is diastolic pressure

Arterial Waveform

Mean Arterial Pressure (MAP)

- Electronic determination preferred to calculated determination
- MAP preferred over systolic pressure
 - Represents true peripheral blood flow driving pressure

Art Line Indications

- Need for continuous monitoring if intra-arteria pressure
- Need for frequent arterial access
 - Blood gas sampling
- Titration of vasoactive medications during transport

Insertion of Arterial Catheter

- Critical care paramedics not often responsible for placement
 - Familiarity of placement sites and insertion technique helpful in management
- Common placement sites
 - Radial artery
 - Ulnar artery
 - Rarely used
 - Brachial artery
 - Femoral artery

Insertion of Arterial Catheter

- Factors determining placement site
 - Experience of practitioner
 - Patient history of vascular disease
 - Relative hemodynamic status of patient
 - Evaluation of risks and benefits of each site

- Assures adequate collateral blood flow to palm
- Technique
 - Have patient clench fist on arm to be used for catheterization
 - Aids with venous flow from palm
 - Digitally occlude radial and ulnar arteries
 - Palmer region will blanch due to lack of arterial blood supply

Allen's Test

- While occluding arteries, have patient open hand
- Release occlusion of ulnar artery that will not be cannulated
- If adequate perfusion supplied by unoccluded ulnar artery, blanching will subside in <3 seconds
- Positive Allen's Test occurs when blushing of the palm indicates ulnar patency

Art Line Placement

- Sterile technique
 - Catheter-over-needle
 - Modified Seldinger technique
- Local anesthesia
 - 1% Lidocaine at insertion site
- Any over-the-needle catheter may be used if anatomy allows
 - For deeper vessels requiring longer catheters, commercial kits are available
 - Guidewire used to increase success rate

- Pain
 - Nerve fibers alongside arterial vessels
- Hemorrhage
 - Higher pressure in arterial system compared to venous
 - Significant hemorrhage can occur rapidly
 - Direct pressure for at least 10 minutes
 - Application of pressure dressing
 - Monitor peripheral perfusion
 - Assess for distal ischemia
 - » Use of blood thinners, fibrinolytics, 2b3a inhibitors

- Vasospasm
 - Arteries more vasoactive than veins
- Waveform distortion
 - Arterial line must be flushed often and rezeroed
 - Ensures accurate readings
 - Damping
 - Suspected when reading does not improve with flushing and rezeroing
 - Results from interaction of arterial pressure wave and arterial line setup

Overdamping

- Causes
 - Blood clots
 - Air bubbles in tubing
 - Kink in tubing
- Results in:
 - Slurred upstroke
 - Loss of dicrotic notch
 - Loss of fine detail of tracing
 - Erroneously low blood pressure readings

Underdamping

- Causes
 - Long connecting tubing
 - Small tubing
 - Catheter too large for vessel
 - Occludes vessel lumen

– Results in:

- Exaggerations in peaks and troughs of waveform
- Erroneously high systolic pressures
- Erroneously low diastolic pressures

Troubleshooting Arterial Dampening

- Damping corrected by addressing underlying problem
 - Ensure that all connections are tight
 - Continuously reassess catheter insertion site
- Kinking of catheter can result in poor distal perfusion
 - Distal ischemia
- Immobilization of extremity may help prevent catheter displacement, disconnection, and kinking

Troubleshooting Arterial Dampening

Arterial Catheter Waveform

- After placement, arterial catheter attached to monitoring system
 - Includes monitor
- Systolic blood pressure
 - Indicated by systolic peak of waveform
 - Peak begins to fall just after completion of QRS on ECG
 - Normal range: 90–140 mmHg

Arterial Catheter Waveform

- Diastolic blood pressure
 - Indicated by trough in waveform
 - Normal range: 60–90 mmHg
- Dicrotic notch
 - Indicates closure of aortic valve
 - Pressure measurement at dicrotic notch = MAP
 - Normal values: 65–100 mmHg
 - > 60 mmHg = Hypoperfusion state
 - − > 55 mmHg = Significant hypoperfusion state

Central Circulation Monitors

- Provides important hemodynamic information
- Two frequently used methods
 - Central venous pressure (CVP) monitor
 - Pulmonary artery catheter monitor

Central Venous Pressure (CVP) Monitor

- Central venous pressure
 - Blood pressure in vena cava/right atrium
 - Pressures equal as no valves exist between locations
- Provides information about right ventricular preload
 - Helpful as a guide for fluid therapy
- Tip of catheter in vena cava near right atrium

CVP Pressure Monitoring

- Water manometer
 - Placed in line between IV fluid and CVP catheter
 - Three-way stopcock
 - To measure, open stopcock between manometer and patient
 - Column of water in manometer equilibrates with pressure in vena cava
 - Level fluctuates with respiration
 - cm H₂0
 - Divide by 1.36 to convert to mmHg

CVP Pressure Monitoring

- Electronic pressure transducer
 - More common than manometry
 - mmHg
 - Must be leveled, calibrated, and zeroed

- Normal CVP
 - $-5-8 \text{ cmH}_20$
 - 0-6 mmHg
 - Trends important
 - Isolated fluctuations of little importance

Abnormal CVP

- Low CVP secondary to:
 - Hypovolemia
 - Relative
 - Venodilation
 - Absolute
 - Hypovolemia

Secondary to:

- Right ventricular failure
- Vasoconstriction
- Fluid volume overload
- Cardiac tamponade
- Chronic pulmonary disease
- Chronic left ventricular failure
- Tricuspid insufficiency
- Mechanical ventilation

- Need for CVP monitoring
- Emergency venous access
 - Large volume fluid administration
 - Medication administration
- Routine venous access
 - Peripheral sites unavailable
 - Need for long-term venous access

Central Venous Catheter Insertion

- Sterile conditions
- Seldinger technique
 - Needle puncture site anesthetized with 1% lidocaine
 - Needle placed in vein
 - Guidewire passed through needle into vein
 - Needle removed
 - Small skin incision made at guidewire to facilitate catheter passage
 - Catheter passed over guidewire into vein
 - Guidewire removed
 - Tubing attached to central line

Seldinger Technique

A. Catheter over needle

B. Catheter over guidewire (Seldinger technique)

Different methods of insertion

Central Venous Catheter Insertion

Central Venous Catheter Insertion

- Access routes
 - Most frequently used
 - Subclavian vein
 - Internal jugular vein
 - Infrequently used
 - Femoral vein
 - External jugular vein
 - Antecubital vein
 - If central route unobtainable
- Type of catheter used dictated by patient need
 - Single lumen
 - Double lumen
 - Triple lumen

Complications

- Hemorrhage
 - Venous perforation
 - Arterial puncture
 - Cannula dislodgment
- Pulmonary complications
 - Pneumothorax
 - Hydrothorax
 - Hemothorax
 - Pneumomediastinum
 - Hydromediastinum

- Dysrhythmias
- Infection
- Extravasation of administered fluids, medications

Central Venous Catheter Waveform

- When electronic monitor is used, waveform and numerical display are produced
- Systolic and diastolic pressures are indistinguishable
 - Low-pressure, venous system
- Mean pressure monitored

Pulmonary Artery Pressure Monitoring

- Central venous catheter passed through right atrium, right ventricle, past tricuspid valve, and into pulmonary artery
- Allows monitoring of:
 - Right ventricular function
 - Pulmonary vascular status
 - Left ventricular function (indirectly)

Pulmonary Artery Pressure Monitoring

- Specific parameters measured
 - -CO
 - Right arterial pressure
 - Right ventricular pressure
 - Pulmonary artery pressure
 - Pulmonary artery wedge pressure (PAWP)

Pulmonary Artery Pressure Monitoring

Catheter

Flow-directed, balloon-tipped pulmonary artery

catheter

- Swan-Ganz catheter
- Dual lumen
 - Distal port
 - Proximal port
- Balloon inflated to:
 - "Float" catheter into position
 - Measure pulmonary wedge pressures

Waveform Interpretation

- Pressure changes during systole and diastole
- Waveforms classified as:
 - Right atrial
 - Right ventricular
 - Pulmonary artery pressure
 - Pulmonary artery wedge pressure
- Relationship between ECG and waveforms

Right Atrial Pressure

- Mean right atrial pressure
 - -8 mmHg

A wave

- First positive deflection
- Rise in pressure due to atrial contraction
- Follows P wave of ECG

Positive Waves

a = atrial contraction

c = tricuspid valve closure

v = passive atrial
filling

Negative Waves

x = decrease in atrial pressure after atrial systole

- X descent
 - Downslope following A wave
 - Fall in pressure due to relaxation of atria

Positive Waves

a = atrial contraction

c = tricuspid valve closure

v = passive atrial
filling

Negative Waves

x = decrease in atrial pressure after atrial systole

C wave

- Small positive deflection on downslope of A wave (X descent)
- Bulging of tricuspid valve early in ventricular systole

Positive Waves

a = atrial contraction

c = tricuspid valve closure

v = passive atrial
filling

Negative Waves

x = decrease in atrial pressure after atrial systole

V wave

- First positive deflection following C wave
- Caused by atrial filling during ventricular systole

Positive Waves

a = atrial contraction

c = tricuspid valve closure

v = passive atrial
filling

Negative Waves

x = decrease in atrial pressure after atrial systole

- Y descent
 - Follows V wave
 - Fall in pressure due to opening of tricuspid valve
 - Ventricular filling

Positive Waves

a = atrial contraction

c = tricuspid valve closure

v = passive atrial
filling

Negative Waves

x = decrease in atrial pressure after atrial systole

Right Ventricular Pressure

- Right-atrial end-diastolic pressure
 - 0-8 mmHg
 - Equal to right atrial pressure when tricuspid valve opens

Right Ventricular Pressure

- Right-atrial systolic pressure
 - 15-30 mmHg
 - Opens pulmonic valve
 - Propels blood into pulmonary artery
 - Higher-pressure chamber

Right Ventricular Pressure Waveform

- Early, steep upstroke
 - Rapid, passive ventricular filling

- Middle, gradual upstroke
 - Slower filling period
- Late, steep upstroke
 - Ventricular filling during atrial systole

Right Ventricular Pressure

- Right atrial and ventricular pressures equal during diastole
 - Tricuspid valve open
- Pressures monitored
 - Right ventricular systolic peak
 - Right ventricular end-diastolic

- Low-pressure system
- Pulmonary artery pressure

- Systolic
 - 15-30 mmHg
 - Equal to right ventricular systolic pressure

- Diastolic
 - 8-15 mmHg
 - Reflects resistance of pulmonary vascular bed
 - Left-ventricular end-diastolic pressure also
 - PA diastolic pressure is indirect measurement of left ventricular pressure

- Mean pulmonary artery pressure
 - 10-20 mmHg

Pulmonary Artery Wedge Pressure (PAWP)

- Measures left-atrial and ventricular enddiastolic pressure
 - More accurate than estimate from pulmonary artery diastolic pressure

- 8–12 mmHg
- Catheter tip placed in pulmonary artery
 - In-place pulmonary artery catheter used
 - Balloon on distal tip inflated

- Balloon advanced until it lodges in branch of pulmonary artery
 - Forward blood flow stopped
 - Static column of blood created
 - Branch of artery
 - Pulmonary capillaries
 - Pulmonary vein
 - Left atrium
 - Open mitral valve
 - During diastole
 - Left ventricle
 - Balloon deflated after measurements completed

PAWP Waveform

- A wave
 - Atrial contraction
- V wave
 - Left ventricular contraction

Complications of PA Catheterization

- Pulmonary injury
 - During needle puncture
- Dysrhythmias
- Infection
- Pulmonary artery rupture

Abnormalities in PA Catheter Pressures

PA Waveform Abnormalities

- Increased size of A waves
 - Impaired arterial emptying
 - Tricuspid stenosis
 - Right ventricular failure

- Increased size of V wave
 - Tricuspid incompetence
 - Regurgitation

Positive Waves

a =left atrial systole

v = passive atrial filling during ventricular systole

Negative Waves

x = decrease in atrial pressure after atrial systole

y = passive emptying of left atrium after mitral valve opens

Elevated PA Pressure

- Left ventricular failure
- Mechanical ventilation
- Increased pulmonary vascular resistance
 - Pulmonary hypertension
 - Pulmonary embolism
 - ARDS

PAWP Waveform Abnormalities

- Increased size of V waves
 - Seen with any resistance to ventricular filling
 - Mitral regurgitation
- Increased size of A waves
 - Seen with any pathology that increases pressure during atrial contraction
 - Mitral stenosis

- Left ventricular dysfunction
- Increased circulating blood volume
 - Increases in right and left ventricular diastolic pressures
 - Constrictive pericarditis
 - Pericardial tamponade

Cardiac Output Determination

- Outputs of left and right ventricles are identical
 - Methods of CO determination
 - Fick method
 - Standard technique
 - Cold thermodilution technique

 $CO = SV \times HR$

Fick Method

 $Q(L/minute) = \frac{O_2 \text{ Consumption (ml/minute)}}{\text{Arteriovenous Oxygen Difference (ml/minute)}}$

Standard Technique

- Most dependable when CO low
 - Arteriovenous oxygen difference large

Cold Thermodilution Technique

Principle

- When indicator is introduced to flow of blood, concentration of indicator at downstream site is inversely proportional to flow rate
 - Higher the flow rate, lower the concentration

Technique

- PA catheter proximal port used to introduce indicator fluid
 - 5% dextrose solution
 - Normal saline
 - Mixes with blood in right ventricle
- Thermistor (temp probe) at distal tip of catheter measures temperature of fluid as it passes through pulmonary artery
- Most dependable when CO high

Hemodynamic Parameters

Body Surface Area (BSA)

Better indicator of body size than height and weight

BSA (m²) =
$$\sqrt{\text{[Height (cm)} \times \text{Weight (kg)}}$$
 3,600

Central Venous Pressure (CVP)

Measured with pulmonary artery catheter

CVP = Right Atrial Pressure = Right-Ventricular End-Diastolic Pressure

Pulmonary Capillary Wedge Pressure (PCWP)

PCWP = Left Atrial Pressure = Left-Ventricular End-Diastolic Pressure

Stroke Volume Index (SVI)

Amount of blood ejected by ventricles during one contraction

SVI = <u>Cardiac Index</u> Heart Rate

Left Ventricular Stroke Work Index (LVSWI)

- Amount of work involved in moving blood in the left ventricle during one contraction
- Assesses contractility
- 35–80 g/m2/beat

LVSWI = $(MAP - PAWP) \times SVI \times 0.0136$ [constant]

Left Ventricular Stroke Work Index (LVSWI)

Pulmonary artery wedge pressure (mm Hg)

Quadrant 1: Optimal function; Quadrant 2: Hypovolemia; Quadrant 3: Hypervolemia; Quadrant 4: Cardiac failure

Systemic Vascular Resistance

- Resistance to blood flow created by systemic vasculature
 - Vasoconstriction increases SVR
 - Changes in blood viscosity can also affect SVR
 - Normal SVR = 900–1,200 dyne/sec/cm-5

SVR = (MAP - CV) Å CO

Systemic Vascular Resistance Index (SVRI)

- Measure of vascular resistance created by entire systemic circulation
 - Depends on:
 - Peripheral resistance
 - Preload
 - Cardiac output

SVRI = MAP — Right Atrial Pressure × 80 Cardiac Index

Pulmonary Vascular Resistance (PVR)

- Calculation of right-side afterload
- Resistance to blood flow created by pulmonary vasculature
 - Pulmonary artery to left atrium
- Normal = 100-200 dyne/sec/cm-5

PVR (dyne/sec/cm -5) = (Mean Pulmonary Artery Pressure – PCWP) × 80

Pulmonary Vascular Resistance Index (PVRI)

 $PVRI = (PAP - PCWP) \times 80$ Cardiac Index

Systemic Oxygen Transport

- Oxygen content
 - Amount of oxygen in blood available for offloading to cells
- Oxygen saturation
 - Amount of blood bound to hemoglobin
 - Oxyhemoglobin
 - 95 to 97 % of oxygen present as oxyhemoglobin
 - 3 to 5 Percent dissolved in plasma
 - Blood gas sample
 - Measures the oxygen dissolved in plasma

Systemic Oxygen Transport

- Oxygen delivery
 - Rate of oxygen transport
 - $-DO_2 = Cardiac Index \times 13.4 \times Hb \times SaO_2$
- Mixed venous oxygen saturation
 - Oxygen saturation in pulmonary artery (SVO₂)
 - Measured with pulmonary artery catheter
 - SVO₂ varies inversely with amount of oxygen offloaded in microcirculation (oxygen uptake)
 - $-SVO_2 = 1/O_2$ extraction

Systemic Oxygen Transport

- Oxygen uptake (VO₂)
 - Amount of oxygen offloading in microcirculation
 - $-VO_2 = Cardiac Index \times 13.4 X Hb \times (SaO_2 SVO_2)$
- Oxygen extraction ratio (O₂ER)
- Ratio between O₂ delivery and O₂ uptake
 - $-O_2ER = (VO_2/DO_2) \times 100$

Clinical Integration

Left Heart Failure

- Decreased CI
- Elevated PCWP
- Elevated SVRI

Cardiogenic Shock

- Decreased CI
- Elevated CVP
- Elevated SVRI
- Low DO₂
- Low VO₂

Hypovolemic Shock

- Decreased CI
- Decreased CVP
- Elevated SVRI
- Low VO₂

Distributive Shock

- Increased CI
- Decreased CVP
- Decreased SVRI
- Low VO₂

Pulmonary Catheter Placement

Indications of PA Catheter Placement

- Diagnosis of shock states and shock types
- Diagnosis of high-pressure versus lowpressure pulmonary edema
- Assessment of vascular tone
- Assessment of myocardial contractility, including determination of cardiac output
- Assessment of intravascular fluid balance

Indications of PA Catheter Placement

- Analysis of mixed venous oxygen saturation
- Monitoring and management of complicated AMI
- Assessment of hemodynamic response to therapies
- Management of MODS and/or severe burns
- Management of hemodynamic instability after cardiac surgery

Insertion of PA Catheter

- Catheter placed in vein
- Catheter fed into vein until distal tip in right atrium
- Distal balloon inflated with 1.5 cc of air
- Distal tip "floated" through tricuspid, into right ventricle, through pulmonic valve, and into pulmonary artery
- Balloon allowed to "wedge" itself in branch of pulmonary artery

Insertion of PA Catheter

Preparation for Hemodynamic Monitoring

- Prime the flush system
- Connect the transducer to the monitor
- Place the transducer
- Zero the pressure system to atmospheric pressure
- Calibrate the pressure system

Priming the Flush System

- Necessary equipment
 - 250–500 cc 0.9% normal saline or heparinized saline solution
 - Flush administration setup
- Tighten all connections in the flush administration set
- Expel all air from flush bag
 - 18g needle via medication administration port
- Spike flush bag, prime drip chamber, and administration set

Priming the Flush System

- Inspect the flush system for air bubbles
- Connect flush administration set to catheter being monitored
 - Flush administration set while connecting to catheter to eliminate air from the catheter
- Apply pressure infuser bag to flush solution
 - Inflate to 300 mm Hg

Connecting the Transducer to the Monitor

- Pressure transducer in administration set
- Connects to monitor cable via connector
 - Waveform visible
 - Leveling and zeroing of transducer needed for pressure measurement

Transducer Leveling and Zeroing

- Transducer placed at phlebostatic axis
 - Level of right atrium, fourth intercostal space
 - Patient supine
- Using three-way stopcock, close patient to transducer and open it to atmospheric air
- Activate zeroing function on monitor
- Close transducer to atmospheric air and open to patient

Transducer Waveform Calibration

- Transducer internally calibrated by monitor
- Most monitors today have default settings
 - Operator can rescale waveform

Complications of Invasive Catheters

- Hemorrhage
- Dysrhythmias
- Pulmonary injury
- Cardiac injury
- Dislodgement

Intra-Aortic Balloon Pump (IABP)

- Augments weakened heart's cardiac output
- Provides mechanical circulatory support for failing heart
- Catheter
 - 30-cm polyurethane balloon on distal end
 - Balloons sized according to height
 - Placed in aorta distal to left of subclavian artery
 - Inserted in femoral artery
 - During operation, rapidly inflated and deflated with 35–40 ml of helium

Intra-Aortic Balloon Pump (IABP)

- IABP pump
 - Rate adjustable
 - 1:1, 1:2, 1:8
 - Inflation volume adjustable

Indications for IABP Therapy

- Cardiogenic shock
- Left ventricular failure
- Drug-induced cardiovascular failure
- Septic shock
- Stunned myocardium
- Cardiac surgery preparation

IABP Operation

- Balloon rapidly inflated at onset of ventricular diastolic period
 - Increases peak diastolic pressure
 - Displaces intravascular blood forward in circulation
 - Coronary artery perfusion increases
- Rapidly deflates at beginning of ventricular systole
 - Reduces end-diastolic pressure
 - Reduces impedance to forward blood flow
 - Decreases afterload
 - Increases SV

Datascope, Fairfield, NJ

IABP Contraindications

- Gross aortic insufficiency
- Peripheral vascular disease with poor femorals
- Irreversible brain damage
- Chronic end state heart disease
- Dissecting aortic or thoracic aneurysms
- Peripheral vascular disease

Side Effects and Complications

- Limb ischemia
- Bleeding at insertion site
- Thrombocytopenia
- Immobility of balloon catheter
- Balloon leak or rupture
 - Helium embolization
 - Thrombus formation
- Infection
- Aortic dissection
- Compartment syndrome

- Transport management of patient on IABP includes:
 - Evaluating patient response to treatment in terms of:
 - Hemodynamic status
 - Dysrhythmia control
 - Systemic perfusion
 - Relief of symptoms of cardiac ischemia

- Transport management of patient on IABP includes:
 - Observing such early signs of complications from IABP therapy as:
 - Limb ischemia
 - Bleeding
 - Infection
 - Thrombus formation
 - Displacement of balloon catheter
 - Arterial damage

- Ensure proper IABP functioning, including:
 - Correct timing
 - Consistent triggering
 - Appropriate troubleshooting of all alarm situations
 - Safe operation

- Air medical transport considerations
- Hypobaric environment can impeded IABP functioning
 - Volume decreases on ascent
 - Volume decreases on descent
- IABP must be reprimed
 - During ascent
 - At altitude
 - During descent

Mechanical Circulatory Support

- Ventricular assist device (VAD)
 - Used to increase CO in patients refractory to IABP therapy
 - Commonly used post—cardiac bypass surgery
 - Pumps placed in ventricle
 - Right (RVAD)
 - Left (LVAD)
 - Both (BiVAD)
 - External power source required
 - Short-term device
 - Bridge to cardiac transplantation

Left Ventricular Assist Device (LVAD)

- Allows rest of injured myocardium by diverting blood flow from injured left ventricle to mechanical pump
 - Pump maintains circulation
- Patients who can benefit from LVAD include those with:
 - Cardiogenic shock secondary to AMI
 - Postcardiotomy ventricular failure
 - Cardiac transplant candidacy

- Critical care paramedics will most likely not be required to establish/insert hemodynamic monitoring catheters
 - Must be familiar with insertion technique, however
- Must be prepared to:
 - Interpret data
 - Use data in differential diagnosis and treatment decisions
- Manage complications of devices