MEDAVIE HealthEa

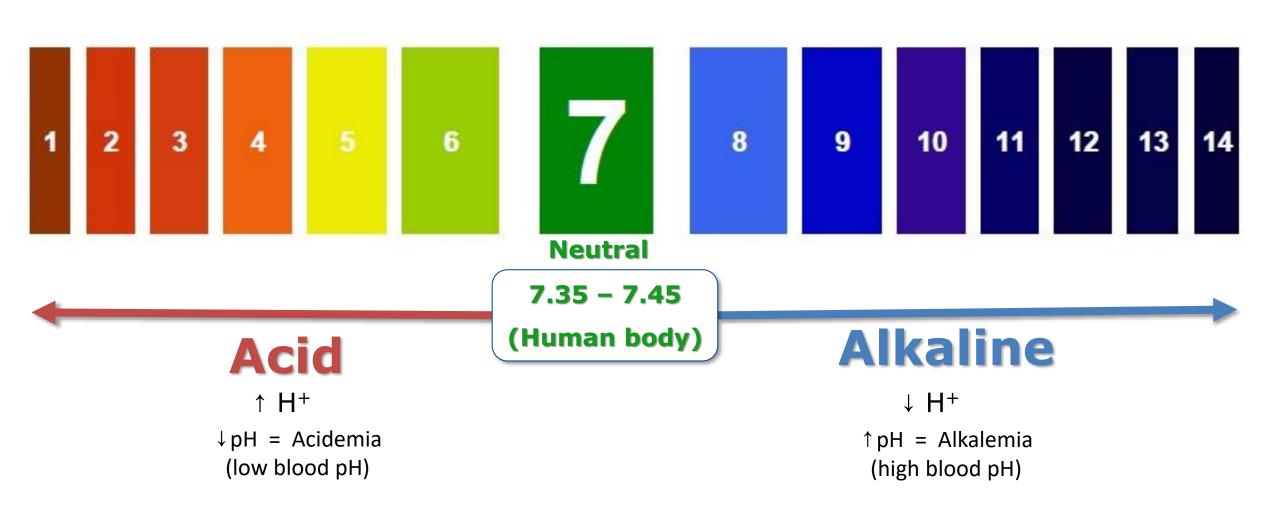
ÉduSanté

ACID-BASE BALANCING

Primary Care Paramedicine

Module:11

Section:03



- One of the most important balances in the body homeostatic mechanisms
 - Acids (proton donators)
 - Bases (proton acceptors)
 - Hydrogen ions (H⁺)
 - Hydroxide ions (OH⁻)

- Hydrogen ion concentration
- Measured in moles/L (represented as pH)
- Acidity/alkalinity increases tenfold with every unit change

(6.7 to 7.9 compatible with life)

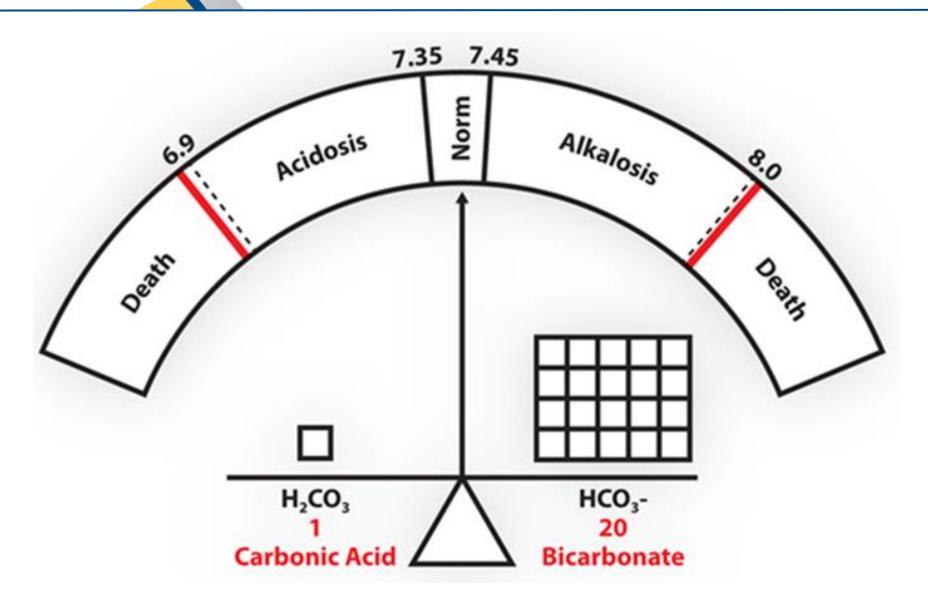
 Recall, that changes made to a reaction already at equilibrium will result in a shift to either the left or right to return the reaction to equilibrium

$$A + B \leftrightarrow AB + Heat$$

- Increase in concentration of reactants or products will cause shift away from the increase
- Decrease in concentration of reactants or products will cause a shift toward the decrease

- Chemical (rapid)
 - Carbonic acid (bicarbonate buffering)
 - Phosphate buffering
 - Protein buffering
- Physiological (secondary)
 - Respiratory buffering
 - Renal buffering

Health Edu Santé


Carbonic Acid Buffer

- Normal carbonic acid to bicarbonate ratio is 1 20 = normal pH range
 - HCO₃-, CO₂ and carbonic acid present in blood stream
 - HCO₃⁻ results from the transport of CO₂ in the blood
 - Carbonic anhydrase causes CO₂ to dissolve in water in the plasma to form carbonic acid (H₂CO₃)
 - H₂CO₃ breaks down into H⁺ and HCO₃⁻
- Increased H₂CO₃ = acidosis
- Increased HCO₃⁻ = alkalosis

$$CO_2 + H_2O \overset{\text{Carbonic Anhydrase}}{\longleftrightarrow} H_2CO_3 \overset{\text{Co}}{\longleftrightarrow} H \overset{\text{Carbonic Anhydrase}}{\longleftrightarrow} H_2CO_3 \overset{\text{Co}}{\longleftrightarrow} H_1CO_3$$

Carbonic Acid Buffer

- Negative charges allow proteins to serve as buffers for alterations in [H⁺]
- Primarily occurs intracellularly
 - Example:
 - In the tissues, CO₂ is high. Once this CO₂ enters the bloodstream, some is converted to Carbonic acid which then dissociates into Bicarb
 - This results in the release of H⁺ into the blood
 - Hb then combines with H⁺ to form a weak acid
 - At lungs Hb binds with O₂ causing the release of H⁺
 - H⁺ then combines with HCO₃⁻ ions to form H₂CO₃ which is converted back to CO₂ and exhaled

 Hydrogen Phosphate / Dihydrogen Phosphate equilibrium helps to buffer the <u>intracellular</u> fluid.

$$HPO_4^2 + H^+ \leftrightarrow H_2PO_4$$

- Example:
 - If extra H⁺ ions enter the cell, HPO₄²⁻ can buffer the change and keep the pH within normal range
 - Results in increased [H₂PO₄-]

- Recovery of bicarbonate and filtered into tubules
- Excretion of H⁺ against a gradient to increase urine acidity
- Excretion of ammonium which carries H⁺

- Metabolic causes
 - HCO₃ $^{-}$ ion
- Respiratory causes
 - $-CO_2$

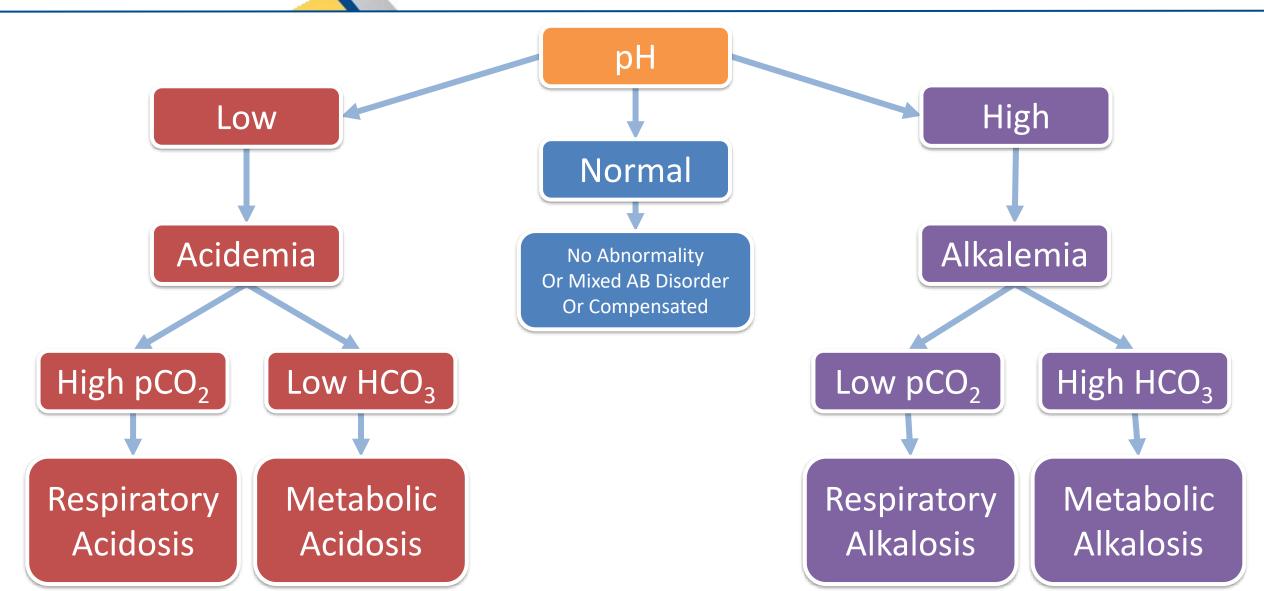
Acidosis

- Metabolic Acidosis
 - − ↓ HCO₃⁻

Respiratory Acidosis

$$\uparrow$$
 CO₂

Alkalosis

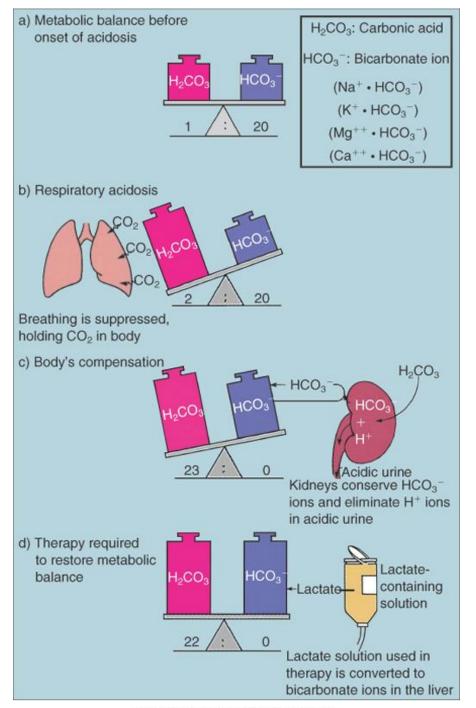

Metabolic Alkalosis

Respiratory Alkalosis

$$-\downarrow CO_2$$

Acid-Base Balancing

- 25 year old
- Respiratory distress



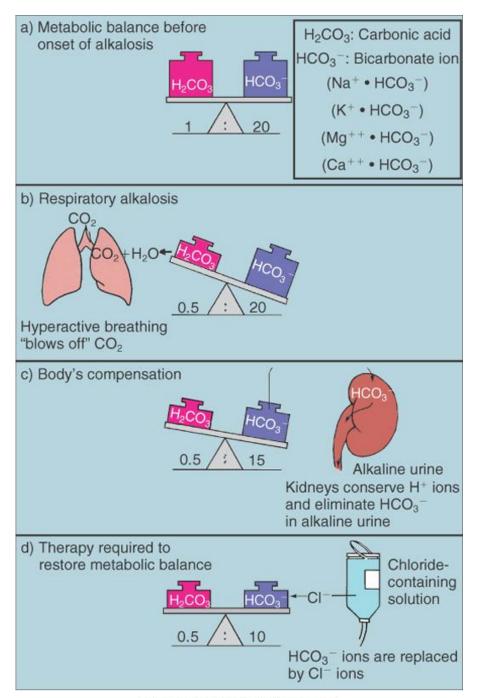
Respiratory Acidosis

$$CO_2 + H_2O \hookrightarrow H_2CO_3 \hookrightarrow H_2 + HCO_3$$

- Results from retained CO₂ and increased PCO₂
 - Depressed respiratory centre
 - Drug abuse, injury or disease
 - Anesthetics, sedatives, narcotics
 - Obstructive airways disease
 - Emphysema
 - Chronic Bronchitis
 - Asthma
 - Sever pneumonia
 - Blockages
 - Inhaled foreign object
 - Vomit
 - Bronchoconstriction (acute asthma)

Mosby items and derived items @ 2007, 2003 by Mosby, Inc.

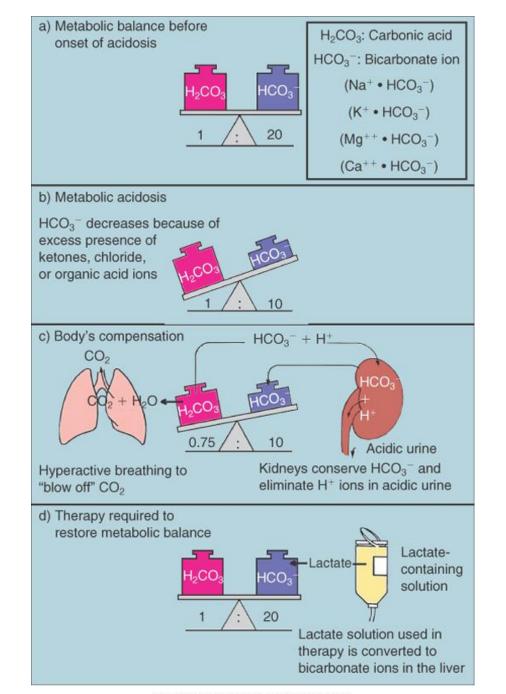
- 30 year old
- Palpitations with radiation to her hands
- Sister recently died due to Cancer



$$CO_2 + H_2O \hookrightarrow H_2CO_3 \hookrightarrow H^+ + HCO_3^-$$

- Results from decreased PCO₂ through hyperventilation
 - Sepsis
 - Peritonitis
 - Shock
 - CO poisoning
 - Head injury
 - DKA

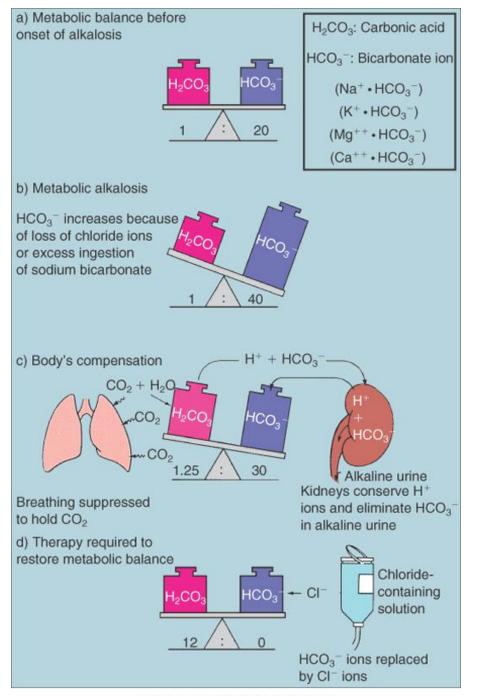
- A 34-year-old female with a history of diabetes is found unresponsive by a family member in bed after she missed work.
- Pt presents unconscious (Her neurological exam appears to be non-focal, her eyes open to pain. She's nonverbal and withdrawals from painful stimuli)
- Primary shows an open, clear airway; spontaneous respirations at 40—50 breaths per minute; and palpable radial pulses.
- GCS 7, Skin hot and dry, BP 132/78, HR 122 bpm, RR 48, SpO₂ 98% on room air. Blood glucose level (BGL) is "HI" on glucometer. Secondary assessment is unremarkable with no signs of trauma or injury.



$$CO_2 + H_2O \hookrightarrow H_2CO_3 \hookrightarrow H_2 + HCO_3$$

- Caused by excessive accumulation of acid or deficiency in base
- Affects the bicarbonate side of equation
- Excessive acid production = bicarbonate buffer consumption
- Common Types:
 - Lactic acidosis
 - Diabetic ketoacidosis
 - Renal failure
 - Ingestion of toxins

- 56 year old
- Feeling unwell for 2 days
- Severe diarrhea



$$CO_2 + H_2O \hookrightarrow H_2CO_3 \hookrightarrow H^+ + HCO_3$$

- Rare
- Results from a loss of H⁺
 - Primarily through the GI related to excessive antacid ingestion
 - Over administration of IV NaHCO₃
 - Over administration of diuretics

- Determines
 - Blood oxygenation
 - Acid-base balance
- Arterial blood used to identify respiratory function
- pH indicates acidosis/alkalosis
 - pCO₂ indicates presence/absence of respiratory component
 - HCO₃ indicates presence/absence of metabolic component

Normal Ranges

- pH 7.35 - 7.45

 $-pCO_2$ 35 -45 mmHg

 $-pO_2$ 80 – 100 mmHg

 $- HCO_3^- 22 - 26 \text{ mmol/L}$

- BE -2 to +2 mmol/L

 $- SaO_2 > 95 \%$

Anion Gap8 - 16 mEq/L

- Complete compensation (pH within normal limits)
- Partial compensation (pH near normal limits)
- Uncompensated (pH above or below normal limits)

Disorder	рН	H+	Primary Disturbance	Compensatory Response
Metabolic Acidosis	\downarrow	↑	↓ [HCO ₃ -]	↓ pCO ₂
Metabolic Alkalosis	↑	\downarrow	↑ [HCO ₃ -]	↑ pCO ₂
Respiratory Acidosis	\downarrow	↑	↑ pCO ₂	↑ [HCO ₃ -]
Respiratory Alkalosis	\uparrow	\downarrow	↓ pCO ₂	↓ [HCO ₃ -]

- Respiratory Opposite
- Metabolic Equal

Disorder	рН	H+	Primary Disturbance	Compensatory Response
Metabolic Acidosis	\downarrow	个	↓ [HCO ₃ -]	↓ pCO ₂
Metabolic Alkalosis	\uparrow	\downarrow	↑ [HCO ₃ -]	↑ pCO ₂
Respiratory Acidosis	\downarrow	个	↑ pCO ₂	↑ [HCO ₃ -]
Respiratory Alkalosis	\uparrow	\downarrow	↓ pCO ₂	↓ [HCO ₃ -]