MEDAVIE HealthEa ÉduSanté ACID-BASE BALANCING **Primary Care Paramedicine** Module:11 Section:03 - One of the most important balances in the body homeostatic mechanisms - Acids (proton donators) - Bases (proton acceptors) - Hydrogen ions (H⁺) - Hydroxide ions (OH⁻) - Hydrogen ion concentration - Measured in moles/L (represented as pH) - Acidity/alkalinity increases tenfold with every unit change (6.7 to 7.9 compatible with life) Recall, that changes made to a reaction already at equilibrium will result in a shift to either the left or right to return the reaction to equilibrium $$A + B \leftrightarrow AB + Heat$$ - Increase in concentration of reactants or products will cause shift away from the increase - Decrease in concentration of reactants or products will cause a shift toward the decrease - Chemical (rapid) - Carbonic acid (bicarbonate buffering) - Phosphate buffering - Protein buffering - Physiological (secondary) - Respiratory buffering - Renal buffering # Health Edu Santé #### Carbonic Acid Buffer - Normal carbonic acid to bicarbonate ratio is 1 20 = normal pH range - HCO₃-, CO₂ and carbonic acid present in blood stream - HCO₃⁻ results from the transport of CO₂ in the blood - Carbonic anhydrase causes CO₂ to dissolve in water in the plasma to form carbonic acid (H₂CO₃) - H₂CO₃ breaks down into H⁺ and HCO₃⁻ - Increased H₂CO₃ = acidosis - Increased HCO₃⁻ = alkalosis $$CO_2 + H_2O \overset{\text{Carbonic Anhydrase}}{\longleftrightarrow} H_2CO_3 \overset{\text{Co}}{\longleftrightarrow} H \overset{\text{Carbonic Anhydrase}}{\longleftrightarrow} H_2CO_3 \overset{\text{Co}}{\longleftrightarrow} H_1CO_3$$ ### Carbonic Acid Buffer - Negative charges allow proteins to serve as buffers for alterations in [H⁺] - Primarily occurs intracellularly - Example: - In the tissues, CO₂ is high. Once this CO₂ enters the bloodstream, some is converted to Carbonic acid which then dissociates into Bicarb - This results in the release of H⁺ into the blood - Hb then combines with H⁺ to form a weak acid - At lungs Hb binds with O₂ causing the release of H⁺ - H⁺ then combines with HCO₃⁻ ions to form H₂CO₃ which is converted back to CO₂ and exhaled Hydrogen Phosphate / Dihydrogen Phosphate equilibrium helps to buffer the <u>intracellular</u> fluid. $$HPO_4^2 + H^+ \leftrightarrow H_2PO_4$$ - Example: - If extra H⁺ ions enter the cell, HPO₄²⁻ can buffer the change and keep the pH within normal range - Results in increased [H₂PO₄-] - Recovery of bicarbonate and filtered into tubules - Excretion of H⁺ against a gradient to increase urine acidity - Excretion of ammonium which carries H⁺ - Metabolic causes - HCO₃ $^{-}$ ion - Respiratory causes - $-CO_2$ ### Acidosis - Metabolic Acidosis - − ↓ HCO₃⁻ Respiratory Acidosis $$\uparrow$$ CO₂ #### Alkalosis Metabolic Alkalosis Respiratory Alkalosis $$-\downarrow CO_2$$ ## Acid-Base Balancing - 25 year old - Respiratory distress ## Respiratory Acidosis $$CO_2 + H_2O \hookrightarrow H_2CO_3 \hookrightarrow H_2 + HCO_3$$ - Results from retained CO₂ and increased PCO₂ - Depressed respiratory centre - Drug abuse, injury or disease - Anesthetics, sedatives, narcotics - Obstructive airways disease - Emphysema - Chronic Bronchitis - Asthma - Sever pneumonia - Blockages - Inhaled foreign object - Vomit - Bronchoconstriction (acute asthma) Mosby items and derived items @ 2007, 2003 by Mosby, Inc. - 30 year old - Palpitations with radiation to her hands - Sister recently died due to Cancer $$CO_2 + H_2O \hookrightarrow H_2CO_3 \hookrightarrow H^+ + HCO_3^-$$ - Results from decreased PCO₂ through hyperventilation - Sepsis - Peritonitis - Shock - CO poisoning - Head injury - DKA - A 34-year-old female with a history of diabetes is found unresponsive by a family member in bed after she missed work. - Pt presents unconscious (Her neurological exam appears to be non-focal, her eyes open to pain. She's nonverbal and withdrawals from painful stimuli) - Primary shows an open, clear airway; spontaneous respirations at 40—50 breaths per minute; and palpable radial pulses. - GCS 7, Skin hot and dry, BP 132/78, HR 122 bpm, RR 48, SpO₂ 98% on room air. Blood glucose level (BGL) is "HI" on glucometer. Secondary assessment is unremarkable with no signs of trauma or injury. $$CO_2 + H_2O \hookrightarrow H_2CO_3 \hookrightarrow H_2 + HCO_3$$ - Caused by excessive accumulation of acid or deficiency in base - Affects the bicarbonate side of equation - Excessive acid production = bicarbonate buffer consumption - Common Types: - Lactic acidosis - Diabetic ketoacidosis - Renal failure - Ingestion of toxins - 56 year old - Feeling unwell for 2 days - Severe diarrhea $$CO_2 + H_2O \hookrightarrow H_2CO_3 \hookrightarrow H^+ + HCO_3$$ - Rare - Results from a loss of H⁺ - Primarily through the GI related to excessive antacid ingestion - Over administration of IV NaHCO₃ - Over administration of diuretics - Determines - Blood oxygenation - Acid-base balance - Arterial blood used to identify respiratory function - pH indicates acidosis/alkalosis - pCO₂ indicates presence/absence of respiratory component - HCO₃ indicates presence/absence of metabolic component #### Normal Ranges - pH 7.35 - 7.45 $-pCO_2$ 35 -45 mmHg $-pO_2$ 80 – 100 mmHg $- HCO_3^- 22 - 26 \text{ mmol/L}$ - BE -2 to +2 mmol/L $- SaO_2 > 95 \%$ Anion Gap8 - 16 mEq/L - Complete compensation (pH within normal limits) - Partial compensation (pH near normal limits) - Uncompensated (pH above or below normal limits) | Disorder | рН | H+ | Primary Disturbance | Compensatory
Response | |-----------------------|--------------|--------------|-------------------------------|-------------------------------| | Metabolic Acidosis | \downarrow | ↑ | ↓ [HCO ₃ -] | ↓ pCO ₂ | | Metabolic Alkalosis | ↑ | \downarrow | ↑ [HCO ₃ -] | ↑ pCO ₂ | | Respiratory Acidosis | \downarrow | ↑ | ↑ pCO ₂ | ↑ [HCO ₃ -] | | Respiratory Alkalosis | \uparrow | \downarrow | ↓ pCO ₂ | ↓ [HCO ₃ -] | - Respiratory Opposite - Metabolic Equal | Disorder | рН | H+ | Primary Disturbance | Compensatory
Response | |-----------------------|--------------|--------------|-------------------------------|-------------------------------| | Metabolic Acidosis | \downarrow | 个 | ↓ [HCO ₃ -] | ↓ pCO ₂ | | Metabolic Alkalosis | \uparrow | \downarrow | ↑ [HCO ₃ -] | ↑ pCO ₂ | | Respiratory Acidosis | \downarrow | 个 | ↑ pCO ₂ | ↑ [HCO ₃ -] | | Respiratory Alkalosis | \uparrow | \downarrow | ↓ pCO ₂ | ↓ [HCO ₃ -] |