

Lecture Outline

- Introduction
- Blunt Trauma
 - Automobile collisions
 - Blasts
 - Other blunt trauma

- Most common cause of trauma death and disability
- Energy exchange between an object and the human body, without intrusion through the skin
- Can be deceptive
 - The true nature of the injury is often hidden
 - Evidence of the serious injury may be very subtle or even absent

Blunt Trauma

- Most commonly from motor vehicle collisions
 - Automobiles
 - Motorcycles
 - Pedestrians
 - Recreational vehicles

- Explosions
- Falls
- Crush injuries
- Sporting injuries

Deceleration Injuries

- After impact organs continue to pull against structures that attach them to the body
 - Organs may separate from attachments
 - Vascular pedicle or mesenteric attachment injury may cause hemorrhage

- Head strikes stationary object
- Cranium stops abruptly

Brain continues moving and is compressed

against skull

Thoracic Injuries

- Aorta often injured by severe deceleration forces
 - Usually sheared at ligamentum arteriosum attachment
- Rupture causes rapid exsanguination

Abdominal Injuries

 Abdominal organs and retroperitoneal structures (most commonly the kidneys) may be affected by deceleration forces

Crush Injuries

Causes

Structural collapse, explosion, industrial or agricultural

Pathophysiology

- Tissue stretching and compression
- Extended pressure results in anaerobic metabolism distal to compression
- Return of blood flow, toxins to entire body
- Severe hemorrhage due to severe damaged blood vessels

Mechanical Principle

- Severity and pattern depend on:
 - Direction of impact
 - For vehicle crashes—energy absorbed by vehicle
 - Part(s) of body to which energy is transmitted
 - Use of protective equipment
 - Compression, deceleration, acceleration
 - Density and contact area of object
 - Velocity at impact

Mechanical Principle

- Again, a crash is any impact between the body and an object
- Assessment and management of the injured patient must consider three phases:
 - Pre-crash
 - Crash
 - Post-crash

- Pre-crash factors must be considered in the assessment and management of the trauma patient:
 - Patient age and size
 - Drugs/alcohol
 - Preexisting medical conditions and
 - Medications

- The crash phase begins at the moment of initial impact
- Remember, there are at least three impacts in most collisions
- Our understanding of Newtonian physics help

- Post-crash
 - Patient outcome is affected by conditions after the crash
 - Response time and resources available
 - Providers' knowledge of kinematics, assessment and management
 - Providers' response depends on knowledge of energy and anatomy

- Motor vehicle crashes come in many varieties:
 - Frontal impact
 - Rear impact
 - Lateral impact
 - Rotational impact
 - Rollover
 - Motorcycle crashes
 - Pedestrian-motor vehicle crashes

Types of Impact

- Frontal: 32%
- Lateral: 15%
- Rotational: 38%
 - Left & Right Front & Rear
- Rear-end: 9%
- Rollover: 6%

Types of Impact

Blunt Trauma

FRONTAL IMPACT

- Most common type of impact
- Often result in significant exchange of energy and serious injuries
- Produces three pathways of occupant travel
 - Down and under pathway
 - Up and over pathway
 - Ejection

 Frontal impacts often result in significant exchange of energy and serious injuries

Down and Under Pathway

- Occupant slides downward as vehicle comes to a stop
- Knees come into contact with firewall and absorb the initial impact
 - Knee, femur and hip fracture or dislocations
- Upper body rotates forward and hits steering wheel
 - Chest trauma
- Driver may take a deep breath in anticipation of the impact
 - Paper bag syndrome

Injury Prediction?

Paper Bag Syndrome

Up and Over Pathway

- Occupant tenses legs in anticipation of the impact
- Upper body pivots forward and upward
- Steering wheel impinges on the femurs
 - Possible bilateral fractures
 - Compresses and injures abdominal contents
- Lower chest strikes steering wheel
 - Thoracic injuries
- Forward motion propels head into windshield
 - Head and neck injuries
 - Axial loading

Up and Over Pathway

- Head leads the way
- Compression of cervical spine
- Chest/abdomen impacts steering wheel
- Compression of hollow and solid organs
- Shearing injuries

Up and Over Pathway

Injury prediction?

- Closed/open head injury ALOC
- Facial fractures
- Airway problems
- Chest
- Abdomen

- Due to up-and-over pathway
- Victims experience two impacts
 - Contact with vehicle interior and windshield
 - Impact with ground, trees or other objects
- Responsible for ~27% of vehicular fatalities

Crumple Zones

- Frontal impacts interpose more vehicle between the point of impact and patients
- Modern vehicles use this area to absorb impact forces and limit occupant injury
- Patients in collisions involving vans or lateral impacts do not benefit the same way

A lateral impact presents the least amount of crumple zone

- Pre-Crash Considerations
 - Age of patients
 - Co-morbid factors, medications
 - Intoxication
 - Age of vehicles
 - Safety measures (50 years of research)
 - Crumple zones, airbags, seatbelts, telemetry
 - Speed, mass, impact type

- Post-Crash Considerations
 - Response time 5 minutes
 - Resources needed?
 - Prediction of injuries based on paramedic's knowledge of anatomy, kinematics?

Driver A (Ford)

- Possible whiplash
- Cuts from flying glass
- Minor upper extremity injuries

Driver B (Toyota)

- Head
- Neck
- Face (airway)
- Chest (multiple)
- Abdomen shearing / compression
- Pelvis
- Upper and lower extremities

Blunt Trauma

LATERAL IMPACT

- 15% of MVC's but 22% of deaths
- Kinetics the same as in a frontal impact
- Two exceptions:
 - Occupants present a different profile
 - Less structural steel to protect occupants

Lateral Impact

- Intrusion into the passenger compartment
- Often an intersection crash
- Vehicle is accelerated in the direction of impact
- What would Newton say about this?

Lateral Impact

- Increased upper extremity injuries
 - Lateral rib fractures
 - Head and neck injuries
- Lateral compression
 - Ruptured diaphragm, spleen fracture, aortic injury
- Consider any unrestrained passengers
 - Becomes an object that will collide with driver

Blunt Trauma

ROTATIONAL IMPACT

Rotational Impact

- Vehicle struck at oblique angle
- Energy exchange generally more gradual
 - Deflected form path rather than stopped
 - Longer stopping distance
 - Deceleration more gradual
- Less serious injuries unless there are multiple impacts

Blunt Trauma

REAR END IMPACT

Rear-End Collision

- Seat propels the occupant forward
 - Generally good protection for the body
 - Poor protection for the head
- Head is forced backwards and then forwards
 - Stretching of neck muscles and ligaments
 - Hyperextension and hyperflexion

Rear-End Collision

a. Victim moves ahead while head remains stationary. Head rotates backward. Neck extends.

b. Head snaps forward. Head rotates forward. Neck flexes.

Rear-End Collision

- Properly placed headrests help lessen injury
- Frontal impact on the target car after rear impact increases the likelihood of injury

Injury Prediction?

- Hyperextension of the neck may occur with improperly placed/absent headrest
- Rapid deceleration may follow if the target car strikes another object or brakes

Injury Prediction?

Blunt Trauma

ROLL OVER

- Generally caused by:
 - Change in elevation
 - Vehicle with high centre of gravity
- Occupant experiences impact at each impact of vehicle
- Often involves ejection or partial ejection
- Injuries are usually compounded by multiple subsequent impacts

 Rollover collisions result in multiple impacts and potentially multiple injuries

Injury Prediction?

Blunt Trauma

COLLISION ANALYSIS

Vehicle Collision Analysis

- Hazards
- Crumple zones
- Intrusion
- Deformity of vehicle
- Use of restraints

- Heat
 - Hot engine and transmission parts
 - Hot fluids (radiator coolant, engine oil)
- Caustic substances
 - Battery acid, automatic transmission fluid, steering fluids
- Sharp jagged edges of metal and broken glass

- 36.5% of deaths on Canadian Highways were alcohol related (2001 CCMTA statistics)
- Patient effects:
 - Alters level of consciousness
 - Masks signs and symptoms of injury
 - Anesthetizes patient somewhat
- Makes mechanism of injury analysis and index of suspicion even more important
 - Otherwise significant injuries may be missed

Vehicular Trauma

Table 17-1 Motor Vehicle Injuries

(Incidence by Body Area)

Head	4 067	26.2%	
Orthopedic	3 944	25.4%	
Superficial	3 847	24.8%	
Internal	2 425	15.6%	
Spinal Cord	337	2.2%	
Blood Vessels	301	1.9%	
Burns	223	1.4%	
Nerves	194	1.3%	
Other	158	1.0%	

Source: NTR/CIHI, 2003. Percentages don't add to 100 due to rounding.

Collision Evaluation

- Collision Questions
 - How did the objects collide?
 - From which direction did they come?
 - At what speed were they travelling?
 - Were the object similarly or different sized?
 - Were there any secondary collisions or additional transfers of energy?

Collision Evaluation

- Cause of Collision
 - Did wet roads or poor visibility contribute to the crash?
 - Was alcohol involved?
 - Are there skid marks? Was the driver prevented from braking?

Collision Evaluation

Auto Interior

- Does the windshield show evidence of an impact?
- Is the steering wheel deformed or collapsed?
- Is the dash indented where the knees or head hit it?
- Has the impact extended into the passenger compartment?

Blunt Trauma

MOTORCYCLES

 Motorcycles provide little protection for their riders during a collision

- Often result in serious trauma even at low speed
 - Driver absorbs most of impact
- Impacts
 - Frontal
 - Angular
 - Sliding
 - Ejection
 - Initial Bike/object collision
 - Rider/object
 - Rider/ground

- Impact stops the vehicle
- Center of gravity is above and behind the front axle, making it the pivot point

Riders are ejected over the handlebars; impacting thighs

- Bilateral femur/pelvic fractures are common
- Secondary impact with stationary object or ground
- Tertiary impact with moving traffic including target vehicle

- Angular impact
 - Rider caught between bike and another object
 - Crush injuries to affected side
 - Open fractures of femur, tibia, fibula
 - Fracture dislocation of malleolus

- Laying the motorcycle down
 - Massive abrasions
 - Fractures of affected side

Motorcycle Collision Ejection

- Injury occurs at point of impact and radiates throughout body as energy is transformed
- Laying down the bike can result in extensive skin damage in unprotected riders

Personal Protective Equipment

- Riders of small motor vehicles
 - Boots
 - Leather clothing
 - Eye protection
 - Helmets
 - Absorb energy, reduce head and facial injuries
 - Helmet non-use increases head injuries > 300%

 Two occupants on a motorcycle strike a moving car in a frontal/lateral impact pattern

- Pre-Crash Considerations
 - Age of patients
 - Co-morbid factors, medications
 - Intoxication
 - Ejection issues
 - Other traffic, protective equipment
 - Speed, mass, impact type

- Post-Crash Considerations
 - Response time 3 minutes
 - Resources needed?
 - Prediction of injuries based on paramedics knowledge of anatomy, kinematics?

Blunt Trauma

PEDESTRIAN

Pedestrian Accidents

Adults

- Adults turn away
- Bumper strikes lower legs first
- Victim rolls up and over and thrown

Children

- Children turn toward
- Thrown in front of car
- Femurs, pelvis often injured

Car-Pedestrian - Adult

- Crash phases vary by height relative to vehicle
 - Initial impact to lower extremities/hips
 - Torso rolls onto hood
 - Victim falls to ground, often head-first

Pediatric Pedestrian

RECREATIONAL VEHICLES

- Lack structure and restraint system
 - Little protection offered to occupants
- Types of Vehicles
 - Snowmobiles
 - Personal watercraft
 - ATV's

- Speeds can be comparable to cars and motorcycles
- Usually result in ejection and/or rollover injuries

 Watercraft accident also present risks of drowning and hypothermia

 ATVs cause a multitude of injuries due to speed, instability and lack of protection

BLAST INJURIES

• Causes:

- Dust (e.g. grain elevator)
- Fumes (e.g. gasoline or natural gas)
- Explosive compounds
- Magnitude ranges from small fire cracker to a nuclear explosion
- May be accidental or an act of terrorism

Mechanisms of a Blast

- Explosion
- Pressure wave
- Blast wind
- Projectiles
- Personnel displacement
- Confined space explosions and structural collapses
- Burns

Blast Injury Phases

- Primary
 - Caused by heat of explosion and pressure wave
- Secondary
 - Caused by blast projectiles
- Tertiary
 - Caused by personnel displacement and structural collapse

Tertiary

Blast Injury Assessment

- Survey and assess scene
 - Be aware of potential for secondary device
 - Secure further EMS operations
- Triage
- Establish Incident Command System if necessary
- Evaluate for secondary hazards

Common Injuries

Lungs

- Pressure wave rapidly compresses and distorts chest, lungs and alveoli
- Ruptures alveolar walls
- Fluid accumulation and hemorrhage
- High risk of emboli formation

Abdomen

- Rapid compression and decompression
- Bowel wall may hemorrhage or rupture
- Release of bowel contents into abdomen

Common Injuries

Ears

- Eustachian tube cannot equalize pressure
- Stretching or rupture of tympanic membrane
- Often fracture of small bones of hearing
- Hearing loss may be temporary or permanent
- Penetrating Wounds
 - Care as any serious open wound or impaled object
- Burns
 - Treatment consistent with traditional management

FALLS

- Release of stored gravitational energy
- Potential for injury depends on:
 - Height
 - Stopping distance

- Nature of impact surface contour
 - Stairway may focus force of impact, increasing seriousness of injury
- Area of contact and pathway of energy transmission
 - Energy transmitted up skeletal structure
- Age related factors
 - Common problem in elderly

"It's not so much the falling, it's the stopping"

- Falls from more than 3X patient height are severe
- Velocity increases with height
- Landing surface affects stopping distance (deceleration)

- Colle's fractures, clavicle fractures, shoulder dislocation
- Other patterns: consider pathway of energy exchange

- Energy absorption occurs vertically through lower extremities to spine
- Compression occurs because of continued downward movement of body
- Expect hyperflexion and compression injuries of spine; shearing injuries

SPORTS INJURIES

- Injuries most commonly produce by extreme exertion, fatigue or direct trauma
 - Variety of injury patterns
 - Often exchange of great kinetic forces producing serious injuries
- Alterations in patient LOC result in:
 - Exclusion from further activity
 - Follow up with a physician

 Contact sports result in the exchange of great kinetic forces

- Greatly reduces potential for injury
 - May also cause injuries e.g. cleats may cause torn ligaments as the foot is fixed while the knee is twisted
- Helmet
 - If loose remove
 - If tight, remove face mask and immobilize in place
 - Take helmet to hospital

- Kinetics of blunt trauma
- Types of trauma
- Blunt trauma
 - Automobile collisions
 - Blasts
 - Falls
 - Sports injuries
 - Crush injuries