

Lecture Outline

- Introduction
- Pathophysiology
- Assessment
- Management

- Common with major trauma
- 170 000 Canadians incur a brain injury annually (465/day)
- 34 000 people admitted to hospital each year with brain injuries in Canada
- 11 000 die each year
- Leading cause of death and disability under 44 years old.

Source: Brain Injury Association of NS

High Risk Groups

- Males 15 24
- Infants
- Young children
- Elderly
- Education initiatives have resulted in a great reduction in incidence

- Time becomes the critical consideration once an injury occurs
- Intracranial hemorrhage and progressing edema
 - Advancing intracranial pressure (ICP)
 - Increasing hypoxia
 - Permanent damage
- Severity is difficult to recognize
 - Subtle signs
 - Improve differential diagnosis/anticipate problems

Risk Factors:

- Alcohol intake
- Substance intake
- Anticoagulants
- Not using/incorrect wearing of safety restraints
- Not wearing a helmet
- Not using proper safety equipment

- Causes of Head Injuries:
 - Motor vehicle collisions
 - Falls
 - Assaults
 - Sports
 - Fire arms

Mechanism of Injury

- Blunt Injury
 - Motor vehicle collisions
 - Assaults
 - Falls
- Penetrating Injury
 - Gunshot wounds
 - Stabbing
 - Explosions (shrapnel)
 - Pointy objects

Protective Layers

Open Head Injuries

- By itself tends to be a minor injury
 - May be the only overt indication of a more serious injury
- Scalp overlies the firm cranium and is very vascular
 - Tend to bleed heavily
 - Route for infection
 - May produce shock, especially in kids

Scalp Injuries

- Often difficult to assess
 - Contusion often expands outward
- If no skull fracture present apply direct pressure and dressing
- If skull fracture is present, apply dressing but NO direct pressure
- Scalp Avulsion
 - Cover the open wound with bulky dressing
 - Pad under the fold of the scalp
 - Irrigate with NS to remove gross contamination

- Cranial injury is a skeletal injury that will heal
- Forces required to fracture the skull are extreme
 - Likely to cause injury within
 - Often sufficient to induce brain injury

Cranial (Skull) Fractures

Forces must be severe to fracture the skull

Cranial Injury Linear Fractures

- Most common (80%)
- Small cracks in the cranium
- Bone is non-displaced
- Usually occurs to temporal bone (thinnest)
- If there are no intracranial injuries, poses very little danger to patient

Cranial Injury Depressed Fracture

- Inward displacement of skull's surface
- Greater likelihood of intracranial damage
- Comminuted fracture
 - Multiple skull fragments
 - May penetrate meninges and underlying structures

Cranial Injury Basilar Skull Fracture

- Structure of the basilar skull
 - Permeated with foramina (openings)
 - Several hollow or open structures
 - Weaker and very prone to fracture
- Associated with
 - Brain injury
 - Dura laceration
 - Cranial nerve damage

Cranial Injury Basilar Skull Fracture

- Presentation varies with location of injury
- Associated signs:
 - Battle's signs
 - Raccoon eyes
 - Halo sign
- May take time to develop and may not be seen prehospital

Cranial Injury

- Battle's Signs
 - RetroauricularEcchymosis
 - Associated with fracture of auditory canal and lower areas of skull
 - Hemorrhage migrates to mastoid region

Cranial Injury

- Bilateral Periorbital Ecchymosis
- Associated with orbital fractures

Cranial Injury Halo Sign (CSF Targeting)

- A tear dura mater
 - Open wound between brain and body's exterior
- Permits CSF to seep out
 - Provides possible route for infection
 - May also provide escape for CSF, limiting ICP
- Produces Halo sign
 - Blood mixed with CSF from nose, mouth or ears
 - Target sign on sheet or 4x4

MOI Considerations

Bullet impacts

- Entry wound creates comminuted fracture
- May create another fracture on exit
- Bullet's path creates a large cavitational wave

Impaled objects

- Further motion may cause significant/devastating injury
- Brain tissue does not immobilize objects as well as other tissues (objects move more)

 "A traumatic insult to the brain capable of producing physical, intellectual, emotional, social and vocational changes."

- Caused by:
 - Rapid acceleration/deceleration or collision
 - Blunt/penetrating forces
- Direct or indirect injury to tissue of the cerebrum, cerebellum or brainstem

Cerebral Perfusion

- Brain is very perfusion sensitive
 - Rapid and devastating effects when compromised
- Cranial volume is fixed
 - Brain = 80%
 - Blood vessels and blood = 12%
 - -CSF = 8%
- Increase in size of one component must be matched by a reduction in another

Cerebral Physiology

- Delivery of oxygen and nutrients to the brain is dependent on adequate cerebral perfusion pressure and autoregulatory mechanisms in the brain
- Any alterations in any of these systems can damage the brain

Cerebral Physiology

- CPP needs to be maintained > 60mmHg to allow for adequate cerebral perfusion
- Increasing the blood pressure with medications may be necessary to increase the CPP

$$CPP = MAP - ICP$$

 $Cerebral\ Perfusion\ Pressure = Mean\ Arterial\ Pressure\ - Intracranial\ Pressure$

Intracranial Perfusion

- As a mass expands within the cranium
 - Compensation via compression of venous blood vessels and reduces CSF
 - Responds quickly to maintain ICP close to normal
- As compensatory mechanisms reach their limits
 - Rise in systemic BP in attempt to ensure adequate perfusion (autoregulation)
 - Increasing ICP

- As CO₂ levels rise in CSF:
 - Cerebral arteries dilate
 - Encourage blood flow
 - Reduce hypercarbia
- In the presence of already high ICP
 - Devastating results
 - Causes classic hyperventilation and hypertension
- Reduced levels of CO₂ in CSF
 - Cerebral vasoconstriction
 - Results in cerebral anoxia

Systemic Problems

- Hypotension
 - Contributes to poor cerebral perfusion
 - Especially with pre-existing ICP
 - Further neural injury due to hypoxia and metabolic acids
- Poor ventilation
 - Increases severity of head injury
 - Cellular hypoxia

- Intracranial Pressure is comprised of three volumes within the skull – brain, cerebrospinal fluid and blood volume
- Body can compensate for loss of blood volume and low blood pressure for a short time before the ICP will increase
- Normal ICP is 10
- ICP above 20 is concerning

Factors Affecting ICP

- Vasculature constriction
- Cerebral edema
- Systolic blood pressure
 - Low BP = Poor cerebral perfusion
 - High BP = Increased ICP
- Carbon dioxide
- Reduced respiratory efficiency

- Early Signs
 - Headache
 - Nausea and vomiting
 - Altered level of consciousness
 - Restlessness
 - Lethargy
 - Amnesia
 - Confusion

- Late Signs
 - Changes in pupil response
 - Unresponsive to verbal or tactile stimuli
 - Posturing
 - Changes in respiratory pattern
 - Cushing's response (very late sign)
 - Increased SBP with wide pulse pressure
 - Bradycardia
 - Decreased respiratory effort

Pressure and Structural Displacement

- As hemorrhage accumulates
 - Expansion pushes uninjured tissue away from injury site
 - Pressure on adjacent brain cells, especially brain stem
 - May push brain against falx cerebri and tentorium cerebelli

Pressure and Structural Displacement

Herniation

- Portion of brain structure pushed through opening (foramen magnum)
- Pressure on upper brainstem
 - Vomiting, decreased LOC, pupil dilation
- Pressure on medulla oblongata
 - Disturbances in respirations,
 blood pressure and heart rate

Brain Injury Signs and Symptoms

- Altered level of consciousness
- Altered level of orientation
- Alterations in personality
- Amnesia
 - Retrograde
 - Anterograde

Brain Injury Signs and Symptoms

- Cushing's reflex (aka Cushing's Triad)
 - Increasing blood pressure
 - Slowing pulse rate
 - Erratic respirations
- Vomiting
 - Without nausea, possibly projectile
- Body temperature changes
- Changes in breathing pattern
- Changes in reactivity of pupils
- Decorticate posturing

Posturing

Decorticate

Problem within cervical spinal tract or cerebral hemisphere

Decerebrate

Problem within mid brain or pons

Pupils

Both dilated (Mydriasis)

- Nonreactive: brainstem
- Reactive: often reversible

Eyelid Closure

- Slow: cranial nerve III
- Fluttering: often hysteria

Unequal Pupils (Anisocoria)

- Naturally occurs in 20% of population
- Cranial nerve III injury
- > 1mm (or more) difference

Unilaterally dilated

- Reactive: ICP increasing
- Nonreactive (altered LOC): increased ICP
- Nonreactive (normal LOC): not from head injury

Breathing Patterns

Cerebral Cortex Compression

- As a portion of the cerebral cortex is impaired
 - The activity it controls is affected
- Frontal lobe injury
 - Alterations in personality
- Occipital lobe injury
 - Visual disturbances

Cerebral Cortex Compression

- Large scale cortical disruption
 - Reduce mental status or amnesia
 - Retrograde
 - Unable to recall events before injury
 - Antegrade
 - Unable to recall events after trauma
 - Repetitive questioning
- Focal Deficits
 - Hemiplegia, weakness or seizures

Upper Brainstem Compression

- Increasing blood pressure
- Reflex bradycardia
 - Vagus nerve stimulation
- Cheyne-stokes respirations
- Pupils become small and reactive
- Decorticate posturing
 - Neural pathway disruption

Middle Brainstem Compression

- Widening pulse pressure
- Increasing bradycardia
- CNS hyperventilation
 - Deep and rapid
- Bilateral pupil sluggishness or inactivity
- Decerebrate posturing

Brainstem Injury

- Pupils dilated and unreactive
- Ataxic respirations
 - Erratic with no pattern
- Irregular and erratic pulse rate
- ECG Changes
- Hypotension
- Loss of response to painful stimuli

Health Edu Santé

Direct Brain Injury

- Caused by the forces of trauma
- Focal:
 - Cerebral contusion
 - Intracranial hemorrhage
 - Epidural hematoma
 - Subdural hematoma
 - Intracerebral hemorrhage
- Diffuse:
 - Mild to moderate diffuse axonal injury (concussion)
 - Moderate diffuse axonal injury
 - Sever diffuse axonal injury

Direct Brain Injury

- Coup injuries
 - Injury at the site of the impact
 - Injuries inflicted as brain displaces towards the impact surface

- Contrecoup injuries
 - Produce tissue damage away from the impact point
 - Brain sloshes toward then away from impact point

Coup and Contrecoup Movement of the Brain

Cerebral Contusion

- Blunt trauma produces capillary bleeding
- Common with blunt head trauma
- Often produces
 - Confusion and/or neurological deficit
 - Personality changes (frontal lobe most commonly injured)
- Generally a coupcontrecoup injury

Epidural Hematoma

- Bleeding between dura mater and skull
- Involves arterial bleed
 - Middle meningeal artery in temporal lobe
- ICP builds rapidly
 - Unconsciousness
 - Reduces oxygenated circulation
 - Displaces brain away from injury and towards foramen heman magnum (herniation)
 - Rapid progression but can be surgically repaired

Subdural Hematoma

- Bleeding within meninges
 - Beneath dura mater and within subarachnoid space
- Usually a venous bleed
 - Bridging veins
 - Signs progress over hours to days
 - Slow deterioration of mentation

Subdural Hematoma

- Occurs above the pia mater
 - Lesser cerebral irritation
 - Increasing ICP takes longer
- At risk groups
 - Elderly and alcoholics
 - Chronic dehydration and stretching of bridging veins

Epidural vs. Subdural

Intracerebral Hemorrhage

- Rupture blood vessel within the brain
 - Bleeding directly into brain
 - Direct cerebral irritation

- Presentation similar to stroke
 - Signs and symptoms worsen over time

- Shearing, stretching or tearing of nerve fibres with subsequent axonal damage
 - Communication pathways of the nerve cells
 - Pathology distributed through brain
- Common in MVCs
- Range from mild to severe

DAI Pathophysiology

Moderate Diffuse Axonal Injury

- "Classic concussion"
- Same mechanism as concussion
 - Involves minute bruising of brain tissue
 - Some degree of residual impairment
- Unconsciousness
 - Involvement of cerebral cortex and RAS
- Commonly associated with basilar skull fracture

- Mild to moderate form of DAI
 - Nerve dysfunction without anatomic damage
 - Most common outcome of blunt head trauma
- Transient episode of
 - Confusion, disorientation, event amnesia
- Suspect if patient has a momentary loss of consciousness
- Management
 - Frequent reassessment of mentation
 - ABC's

Moderate Diffuse Axonal Injury

Presentation

- Unconsciousness or persistent confusion
- Loss of concentration, disorientation
- Retrograde and anterograde amnesia
- Visual and sensory disturbances
- Mood or personality changes

Severe Diffuse Axonal Injury

- Brainstem injury
- Significant mechanical disruption of many axons
 - Cerebral hemispheres with extension into brainstem
- High mortality rate
 - Survivors have some degree of neurologic impairment
- Presentation
 - Prolonged unconsciousness
 - Cushing's reflex
 - Decorticate or decerebrate posturing

Brain Injury: Assessment Considerations

- Common concurrent injuries:
 - Cervical
 - Facial
- Depending on type of trauma and MOI, concurrent injuries could involve any and all other body systems.

 BEWARE OF

Concurrent Injuries In Head Trauma

Brain Injury: Assessment Considerations

- Focused History
 - Any loss of consciousness/how long?
 - Complaints?
 - Any impact to head?
 - Amnesia?
 - Anterograde No recollection after injury
 - Retrograde No recollection prior to injury
 - Headache?
 - Nausea/vomiting?
 - Drug or alcohol use?
 - Previous brain injury or seizure disorder?

Brain Injury Management

Do's

- Support Airway
- Support breathing/ventilations
- Initiate IV's
- Cover all open wounds with dressings

Don'ts

- Insert NPA if suspect basilar skull fracture
- Hyperventilate
- Run IV fluid w/o is suspected increased ICP
- Apply direct pressure over unstable skull fractures
- Pack nose or ears if bleeding

Indirect Brain Injury

- Result of factors that occur as a result of but after the initial injury
- Progressive
- Pathological processes
 - Diminishing circulation to brain tissue due to increasing ICP
 - Pressure against brain tissue secondary to an expanding mass

Pediatric Head Trauma Considerations

- Skull not fully formed at birth
 - Distort with impact and transmit force more directly
 - Permits some intracranial expansion
- Increases direct injury associated with head trauma
 - Slows progression of ICP
- Proportionally larger head
 - Intracranial hemorrhage contributes to hypovolemia

Pediatric Head Trauma Consideration

- Obligate nasal breathers
 - Must have a patent nasal passage and pharynx to clear airway
- Avoid hyperextension of head
 - Tongue pushes soft pallet closed
 - Ventilate through mouth and nose

Facial Injuries

- Serious trauma complication
- Cosmetic importance
- Vasculature
- Location of initial airway and alimentary structures
- Sense organs
- Associated head and spinal injuries

Facial Soft Tissue Injury

- Highly vascular tissue
- Contribute to hypovolemia
- Airway effects
 - Deep injuries can result in blood being swallowed and endanger the airway
 - nd _____
 - Soft tissue swelling reduces airflow
 - Superficial injuries rarely involve the airway
- Consider likelihood of basilar skull fracture or spinal injury

- Very specialized body tissue
- Can indicate problems with:
 - CN-II, CN-III, CN-IV and CN-VI
 - Perfusion associated with cerebral blood flow
- Surface of eye is highly dependent on good perfusion and lacrimal fluid flow
 - If perfusion diminished, eyes lose luster quickly
- Quick, highly visible signs of patient's demeanor
 - Anxiety, fear, anger, etc.

Eye Trauma

- Penetrating trauma
 - Can result in long term damage
 - Suspect small foreign body if patient complains of sudden eye pain and sensation of something on the eye
 - Do not remove
- Corneal abrasions and lacerations
 - Common and usually superficial

- Hyphema
 - Blunt trauma to the anterior chamber of the eye
 - Blood in front of iris or pupil
- Sub-conjunctival hemorrhage
 - Less serious condition
 - May occur after strong sneeze, severe vomiting or direct trauma

- Retinal detachment
 - Traumatic origin
 - Complaint of dark curtain/obstruction in the field of view
 - Possibly painful depending on type of trauma
- Soft tissue lacerations
 - May disrupt lacrimal gland function

- Pupil size and reactivity can indicate underlying problems
- Reduced pupillary responsiveness
 - Depressant drugs or cerebral hypoxia
- Fixed and dilated
 - Extreme hypoxia
- Expanding cranial lesion
 - Ipsilateral pupil becomes sluggish, dilated then fixed

Eye Trauma

Hx

- Corrective/contact lens
- Contact lens currently in place
- Prosthetic eye
- Eye sight affected
- Change in vision
- Blurred vision
- Complete vision loss
- Visual field defect
- Onset of changes start

O/Ex

- Periorbital trauma
- Global rupture
- Redness
- Swelling
- Blood or purulent discharge
- Foreign body
- Papillary size
- Papillary abnormalities

- General Approach
 - Limit damage, cover both eyes
 - Avoid increase in intraocular pressure (vomiting),
 dimenhydrinate 25 mg IV , no direct pressure
 - Consider analgesics
- Penetrating
 - Immobilize object in place
- Blunt
 - Secure and immobilize to prevent movement
- Avulsed Eye
 - DO NOT attempt to put back in socket
 - Secure and immobilize to prevent movement

Removing Particles From the White of the Eye

a.

- a. Pull down the lower lid while the patient looks upwards, or
- b. Pull up the upper lid while the patient looks downward
- c. Use a moistened suction cup to remove contact lenses

Dimenhydrinate (Gravol)

Classification

Antiemetic, Antihistamine, Anticholinergic

Mechanism of Action

- Blocks histamine and ach receptors in the vomiting center
- Blocks the pathway between the inner ear and vomit center that can cause N/V
- Similar to chemical composition of diphenhydramine

Indications

- Nausea and vomiting
- Relief or prevention of motion sickness and vertigo

Dimenhydrinate (Gravol)

Contraindications

Hypersensitivity

Dosage

- Adults
 - 25 100 mg IM q 4h PRN (25 50 mg most common)
 - 12.5 50 mg IV q 4h PRN
- Pediatric
 - 1.0 mg/kg IV/IM max of 25 mg

Tetracaine

Classification

Topical anesthetic

Mechanism of Action

 Topical ophthalmic anesthetic to allow for flushing of an eye by removing the blink reflex

Indications

To facilitate eye flushing

Tetracaine

Contraindications

- Hypersensitivity to local anesthetics (caine family)
- Possible penetrating eye injury

Dosage

- 2 -3 drops in affected eye
- Once treatment is done, moist gauze should be placed over eye until blink reflex returns

Most common causes:

- Assault
- MVC
- Falls
- Contact sports
- S/Sx
 - Pain
 - Bruising
 - Deformity
 - Asymmetrical facial features

- Mandibular dislocation
 - Displaces from the TMJ
 - Results in malocclusion of mouth, misalignment of teeth, immobility of jaw
 - Rarely a threat to airway or breathing
- Mandibular fractures
 - Deformity along jaw and loss of teeth
 - Possible airway compromise if patient placed supine
 - Evaluate for multiple fracture sites

- Maxillary fractures
 - Classified according to Le Fort criteria
 - Le Fort I
 - Slight instability, involving maxilla alone
 - No associated displacement
 - Le Fort II
 - Fracture of both maxilla and nasal bones
 - Le Fort III
 - Entire facial region below brow ridge
 - Le Fort II and III usually result in CSF leakage and endanger patency of airway

Le Fort Facial Fracture Classification

- Dental injury (tooth avulsion)
 - Commonly associated with blunt facial trauma
 - May become foreign objects drawn into airway
 - Broken teeth may be reimplanted if fully intact
 - Handle by crown, avoid handling root
 - Do not rinse/scrape tooth
 - Cover in gauze
 - Keep tooth moist
 - Transport in milk, saliva or saline if possible. Not tap water.

- Orbital fractures
 - Involve zygoma, maxilla and/or interior shelf
 - Reduction of eye movement
 - Possible diplopia
 - Limitation of jaw movement

Nose Fracture:

- Painful and often create grossly deformed appearance
- Rarely life threatening
- Swelling and hemorrhage may interfere with breathing

Epistaxis

- Most common problem
- Anterior
 - Comes from septum, usually self-limiting
- Posterior
 - May be severe and cause blood to drain into patient's throat

Maxillofacial Trauma Epistaxis Management

- Conscious/no c-spine issue
 - Advise patient to gently blow nose to express clots
 - Position patient to lean forward
 - Maintain continual firm pressure on bilateral nares
 - Do not apply pressure to bridge or boney part of nose
- Unconscious/c-spine
 - Place in recovery position
 - Suction PRN
- Other considerations
 - If nauseated, give dimenhydrinate
 - Pt with bleeding disorders or taking anti coagulant meds may require IV fluid challenge

Maxillofacial Trauma Epistaxis Management

Ear Injury

- External ear
 - Pinna is frequently injured due to trauma
 - Poor blood supply
 - Poor healing
- Pinna Injury
 - Place in close anatomic position as possible
 - Dress and cover with sterile dressing
- Internal ear
 - Well protected from trauma
 - My be injured due to rapid pressure changes
 - Diving, blast, or explosion
 - Temporary or permanent hearing loss
 - Tinnitus may occur

- Contains Important structures:
 - Major blood vessels
 - Spinal cord/nerves
 - Airway
 - Digestive tract

Neck Trauma

- Mechanism of Injury:
 - Blunt
 - Compression/ruptures of AW, esophagus, blood vessels
 - Penetrating
 - Knives, GSW, debris
 - Involve other body systems
 - Strangulation/near hanging
 - Suicide/homicide
 - "Clothes line injury"

Neck Trauma Signs and Symptoms

- Dyspnea/tachypnea
- Airway obstruction
- Subcutaneous emphysema
- Hoarse voice
- Difficulty swallowing
- Impaled object
- Bubbling at open wound
- Bruising
- Swelling

- Subcutaneous emphysema
 - Sign of developing tension pneumothorax
- Penetrating trauma
 - May involve esophagus
 - Allow gastric contents to escape into mediastinum
- Deeper penetrating trauma may involve vagus nerve disruption
 - Tachycardia and GI disturbances
- More anterior injuries may affect the thyroid and parathyroid glands

- Airway trauma
 - Tracheal rupture or dissection from larynx
 - Airway swelling and compromise
- Cervical spine trauma
 - Vertebral fracture
 - Paresthesia, anesthesia, paresis or paralysis beneath the level of the injury
 - Neurogenic shock may occur

Blood vessel trauma

- Blunt trauma
 - Risk of serious expanding hematoma
 - May restrict jugular veins
- Laceration
 - Large blood vessels may result in serious hemorrhage
 - Entraining of air may result in embolism
 - Cover with occlusive dressing
 - No bilateral pressure to neck

Transport Considerations

- Limit external stimulation
 - Can increase ICP
 - Can induce seizures
- Cautious about air transport
 - May save time
 - Increased risk of seizures

Emotional Support

- Have friend or family provide constant reassurance
- Provided constant reorientation to environment if required
 - Keeps patient calm
 - Reduces anxiety

- Pathophysiology
- Assessment
- Management