

Lecture Outline

- Introduction
- Pathophysiology
- Musculoskeletal injury assessment
- Musculoskeletal injury management

- Second in frequency only to soft-tissue trauma
- Usually result from significant direct or transmitted blunt kinetic forces
- Painful and debilitating but rarely threaten life

Prevention Strategies

- Optimal way to reduce musculoskeletal injuries
 - Application of modern vehicle and highway designs
 - Workplace safety standards
 - Protective sports equipment
 - Good safety practices and public education

Types of Muscular Injuries

- Contusion
- Compartment syndrome
- Penetrating injury
- Muscle fatigue
- Muscle cramp
- Muscle spasm
- Muscle strain

Muscular Injuries

Muscle fatigue

- Occurs as muscle reach limits of performance
- Cell environment becomes hypoxic
- Strength diminishes, further exertion becomes painful

Muscle cramp

- Muscle consume oxygen and energy sources
- Circulation cannot clear metabolic wastes
- Irritation, muscle contraction (spasm)

Muscular Injuries

- Muscle spasm
 - Affected muscle goes into contraction
 - Clonic: intermittent
 - Tonic: constant

Usually subsides with restoration of circulation

Muscular Injuries

Strain

- Muscle overstretched by forces stronger than muscle
- Muscles stretch
- Ligaments may stretch or tear
- Pain that increases with use

Joint Injuries

- Sprain
- Subluxation
- Dislocation

- Tearing of a joint capsule's connective tissue
 - Grade I
 - Minor and incomplete tear of muscle fibers
 - Mild painful but minimal swelling
 - Joint stable
 - Grade II
 - Partial tear
 - Moderate to severe pain and swelling
 - Joint intact but unstable
 - Grade III
 - Complete tear
 - Severe pain and spasm
 - Loss of function/Joint unstable

small tears

tear

Grade II

Grade III

- Partial displacement of a bone end from its position within a joint capsule
- Significantly reduces joint's integrity
- Caused by:
 - Hyperflexion
 - Hyperextension
 - Rotation beyond normal
 - Extreme forces

- Complete displacement of a bone end from its normal joint position
- Danger of entrapping, compressing or tearing blood vessels
- Caused when joint moves beyond its normal range of motion
 - Usually with great force

Knee Dislocation

Fracture

- An involved fracture that ultimately interrupts the continuity of bone
- May be by direct or indirect
- Complications:
 - Nerve damage
 - Vascular damage
 - Associated injuries to muscles, tendons, ligaments etc.

- Open fracture
- Closed fracture
- Hairline fracture
- Impacted fracture
- Transverse fracture
- Oblique fracture

- Comminuted fracture
- Spiral fracture
- Fatigue fracture
- Greenstick fracture
- Epiphyseal fracture

Open

- Bone is displaced and moves through muscle, sub Q tissue and the skin
- Bone does not have to be visible to be classified as open

Closed

Bone is not displaced enough to cause disruption in the skin

- Hairline
 - Small crack in bone that does not disrupt integrity of the bone
- Fatigue
 - Associated with prolonged or repeated stress
 - Bone weakens and fractures without force

Pediatric Considerations

- Contain greater proportion of cartilage than adult bones
- Flexible nature of bone
 - Susceptible to greenstick fracture
- Bone grows from epiphyseal plate
 - More prone to epiphyseal fractures
 - Growth plate disruption may lead to reduction or halt bone growth

Geriatric Considerations

- Aging causes changes to musculoskeletal system
 - Gradual decrease in bone mass and collagen structure
 - More brittle bones that heal more slowly
- Osteoporosis
 - Accelerated degeneration of bone tissue due to loss of essential minerals
 - Becomes most serious after menopause

Pathological Fractures

- Disease processes that affect bone development or maintenance
 - Tumours and other diseases
 - Radiation treatment
- Fracture not likely to heal well if at all

General Considerations

- Limited soft tissue surrounding joints
 - Compromised nerve and blood supply distal
- Blood vessels enter bone through diaphysis
 - Compromised blood supply to distal bone end
- Reduced stability
 - Damage to soft tissue, vascular and nerve involvement
- Muscle spasm
 - May cause bone ends to over-ride each other

Bone Repair Cycle

- Hemorrhagic clot
 - Fracture tears periosteum
 - Blood fills area and congeals

Bone Repair Cycle

- Bony callus formation
 - Osteocytes from bone ends multiply and produce osteoblasts
 - Lay down salt crystals with collagen clot fibres
 - Two ends join and form knob of cancellous bone

Bone Repair Cycle

Remodelling

- Continued deposition of salts/collage strengthens and stabilizes bone
- Dissolved in low stress areas, added to high stress areas
- Bone remodelled
- If bone experiences interruption in healing, site may never return to normal

Inflammatory and Degenerative Conditions

Bursitis

 Acute or chronic inflammation of the small synovial sacs

Tendonitis

 Accumulation of small tears in the tendon that have not healed properly over time

 Inflammation of a tendon and/or the protective sheath

Inflammatory and Degenerative Conditions

- Osteoarthritis
 - Inflammation of a joint from wearing down of the articular cartilage
- Rheumatoid arthritis
 - Chronic disease that causes deterioration of the peripheral joint capsule
 - Extreme cases causes flexion contractures
- Gout
 - Inflammation in joints and connective tissue produced by accumulation or uric acid crystals

Osteoarthritis vs Rheumatoid Arthritis

Musculoskeletal Trauma

ASSESSMENT

- Scene assessment
 - Look for indications of severity of trauma forces
 - Kinetic energy forces may also cause internal and spinal injuries
 - Don't let injuries be a distracter

 As you begin the assessment, examine the patient quickly for MSK injuries; but remember that they are not often life threatening.

Primary Assessment

- Classification of patients with musculoskeletal injuries:
 - Life and limb threatening injuries
 - Life-threatening and minor musculoskeletal injuries
 - Non-life-threatening but serious limb threatening injuries
 - Non-life-threatening and only isolated minor musculoskeletal injuries

Rapid Trauma Assessment

- 80% of patients with multi-system trauma have associated musculoskeletal trauma
- Look for specific fractures
 - Pelvis: up to 2000 mL of blood loss
 - Femur: up to 1500 mL of blood loss

Focused History and Secondary

- Six P's of evaluating a limb injury
 - Pain
 - Pallor
 - Paralysis
 - Paraesthesia
 - Pressure
 - Pulses

Health Edu Santé

a. A fracture will often present with deformity.

FIGURE 22-5 Presentation of a forearm fracture.

b. An x-ray of the fracture.

- Palpation
 - Instability
 - Deformity
 - Crepitus
 - Muscle tone
 - Temperature
- Evaluate distal sensation, circulation and mobility

FIGURE 22-6 Evaluate the distal extremity for pulse, temperature, colour, sensation, and capillary refill.

Early Indicators of Compartment Syndrome

- Feelings of tension within limb
- Loss of distal sensation
 - Especially in webs of fingers and toes
- Complaints of pain
- Condition more severe than mechanism of injury would indicate
- Pain on passive extension of extremity
- Pulse deficit (late sign)

Injury Management

- Protect open wounds
- Proper positioning
- Immobilize the injury
- Monitor neurovascular function

Protecting Open Wounds

- Any open wound in close proximity to a fracture
 - Open fracture
- Cover with a sterile dressing
- Realignment/splinting may draw bone ends back into skin
 - Report to receiving physician

Positioning of the Limb

- When possible place injured limbs in position of function or a neutral position
 - Ensure patient comfort
 - Reduce chances of further injury
 - Encourage venous drainage
 - Stop realignment if there is any pain or resistance
- Do not attempt alignment of dislocations or serious injuries within 7 cm of a joint

Positioning of the Limb

- Gently position the limb in the position of function, unless:
 - Your attempts meet resistance
 - Or a significant increase in pain
 - Or the injury iswithin 7 cm of a joint

Immobilization

- Prevents further injury
- Above the joint above and below joint below
- Wrap from distal to proximal
- Reassess distal properties before, during and after immobilization

Splinting Devices

- Rigid splints
- Formable splints
- Soft splints
- Traction splints
- Other splinting aids
 - Vacuum splints
 - Air sprints
 - Cravats or velcro splints

Splinting Devices

FIGURE 22-8 A variety of splints are available for musculoskeletal injuries.

Traction Splints

a. A bipolar frame traction splint

b. A unipolar frame traction splint

FIGURE 22-9 Traction splints.

FIGURE 22-10 Suction the air out of a vacuum splint until the device is rigid. Reassess pulse, motor function, and sensation in the extremity after application.

- Assess neurovascular status
 - Correct compromise with traction/realignment
- Use gentle traction to realign limb
 - Immobilize proximal limb and apply traction to distal
- Splint with appropriate device
- Secure limb
- Constant reassessment of distal neurovascular status

- Assess neurovascular status
 - If compromised, consider moving limb to reestablish it
 - Rapid transport
- Immobilize joint in position found
- Reduction
 - Return displaced bone to normal position

Muscle and Connective Tissue Care

- Rest the extremity
- Ice for the first 48 hours
- Compress with elastic bandage
- Elevate the extremity

- Pelvic ring fractures are serious lifethreatening injuries
 - Hemorrhage
 - Fat emboli
- Significant kinetic forces
- Stabilize fracture
 - Wrap, scoop stretcher
- Hemodynamic support

- Usually the result of violent forces
- Severe pain
 - May result in muscle spasms
 - Cause bone ends to over-ride
 - Traction splint
- Proximal fractures
 - Differentiate from fractured hip

- Align limb
- Determine neurovascular status
 - Mid-shaft Apply traction splint
 - Proximal/distal Apply splint
- Reassess patient
- Consider other injuries/transport

Health Edu Santé

Tibia/Fibula Fractures

- Can occur separately or together
- Tibia is more commonly fractured
- If only fibula is broken, limb may be stable
- Generally air or rigid splints are most effective

FIGURE 22-12 Placement of long padded board splints laterally and medially can effectively splint tibia/fibula fractures.

Clavicle Fractures

- Most commonly fractured bone
- Usually the result of transmitted forces directed along the upper extremity
- Sling and swathe or figure eight bandage
- Monitor for risk of internal hemorrhage or respiratory compromise

Humerus Fractures

- Difficult to immobilize at proximal end
 - Bone buried deep within muscle and shoulder joint
- Sling and swathe tends to be most effective method

Radius/Ulna Fractures

- Most commonly fractured at distal end
 - Colles' fracture, silver fork deformity
- Major concern is neurovascular compromise
- Short padded rigid splint
 - Leave at least one digit exposed

FIGURE 22-13 A malleable splint can effectively splint fractures of the radius and/or ulna.

Hip Injuries

- Anterior dislocation
 - Head of femur palpable in inguinal area
 - Externally rotated
 - Minimally flexed
 - Abducted
 - Generally cannot be reduced prehospital
- Posterior dislocation
 - Most common
 - Knee flexed and foot rotated inwardly
 - Adducted
 - Reduce only if there is neurovascular compromise
- Otherwise secure with fracture board or scoop stretcher

- May include:
 - Fractures of femur, tibia or both
 - Patellar dislocations
 - Frank dislocations
- Immobilize in position found
 - Unless there is neurovascular compromise
- Patellar dislocations very painful
 - Occasionally reduced in prehospital setting (according to local protocol)

FIGURE 22-14 Angulated knee dislocations can be immobilized with two padded rigid splints.

Ankle and Foot Injuries

- Often produce distal lower limb that is grossly deformed
- Dislocations may be anterior, posterior or lateral
- Pillow splint is often most effective

FIGURE 22-15 A pillow splint can be used for injuries to the ankles and feet.

Shoulder Injuries

- Most commonly involve proximal humerus, lateral scapula and distal clavicle
- Immobilize in position found

Reduction often occurs as a result of patient

body position

Shoulder Injuries

- Anterior dislocation
 - Humeral head displaced forward
- Posterior dislocation
 - Rotate arm internally, displaced away from chest
- Inferior dislocation
 - Humeral head displaced downward, arm locked over shoulder

- High incidence of neurovascular involvement
- Blood vessels running through elbow are held firmly in place
- Careful and minimal movement required to restore distal function
- Elbow dislocations should not be reduced in the prehospital setting

Health Edu Santé

FIGURE 22-16 Use a corrugated board splint such as a Speedsplint to immobilize angulated fractures or dislocations of the elbow.

- At risk due to high activity levels and incompletely developed coordination
- Greenstick fracture
 - Stable but angulated limb
 - Do not realign
- Epiphyseal fracture
 - Endangers future growth
 - Treat as a potentially limb-threatening injury

Athletic Injuries

- Higher incidence of injuries in contact sports
- Establish rapport with athletic trainers
 - Patient becomes part of EMS system
- RICE

- Pathophysiology
- Musculoskeletal injury assessment
- Musculoskeletal injury management