

Lecture Outline

- Introduction
- Pathophysiology
- Assessment
- Management
- Documentation

- The thoracic cavity contains many vital structures
 - Heart, great vessels, esophagus, tracheobronchial tree, and lungs
- Trauma to the thoracic cavity remains a significant cause of death and disability in the multiple injured patient.
- Thoracic trauma is cause of death in 25% multiple injured patients and is a contributing cause of death in an additional 25%

On the Surface

Thoracic Anatomy

Thoracic Anatomy

Mechanism of Injury

Blunt Force Trauma

- Results from kinetic energy forces transmitted through the tissues
- Blasts
 - Pressure wave causes tissue disruption
 - Tear blood vessels & disrupt alveolar tissue
 - Disruption of tracheobronchial tree
 - Traumatic diaphragm rupture
- Crush (compression)
 - Body is compressed between an object and a hard surface
 - Direct injury of chest wall and internal structures

Blunt Force Trauma

- Deceleration
 - Body in motion strikes a fixed object
 - Blunt trauma to chest wall
 - Internal structures continue in motion
 - Ligamentum Arteriosum shears aorta
- Age Factors
 - Pediatric Thorax
 - More cartilage allows it to absorbs forces
 - Increased likelihood of underlying injuries
 - Geriatric Thorax
 - Calcification and osteoporosis increases likelihood of fractures

Blunt Force

Penetrating Trauma

- Low Energy
 - Arrows, knives, handguns
 - Injury caused by direct contact and cavitation
- High Energy
 - Military, hunting rifles and high powered hand guns
 - Extensive injury due to high pressure cavitation

Penetrating Trauma Low vs. High Energy

Penetrating Trauma

Shotgun

- Injury severity based upon the distance between the victim and shotgun & caliber of shot
- Type I: >7 meters from the weapon
 - Soft tissue injury
- Type II: 3-7 meters from weapon
 - Penetration into deep fascia and some internal organs
- Type III: <3 meters from weapon
 - Massive tissue destruction

Penetrating Trauma

Chest Wall Injuries

- Intact chest required for adequate ventilation
 - Respiratory insufficiency
- Most common injuries encountered in blunt chest trauma
 - Contusions
 - Rib fractures
 - Sternal fractures/dislocations
 - Flail chest

Signs and Symptoms of Chest Wall Injuries

- Blunt or penetrating trauma to chest
- Erythema
- Ecchymosis
- Dyspnea
- Pain on breathing
- Limited breath sounds
- Hypoventilation
- Crepitus
- Paradoxical movement of chest wall

- Most common chest wall injury
- Injury to soft tissue covering thoracic cage
 - Pain with respiratory effort
 - May lead to hypoventilation
 - At risk patients with pre-existing conditions
- Erythema, ecchymosis

- > 50% of significant chest trauma cases due to blunt trauma
- Compressional forces flex and fracture ribs at weakest points
- Hypoventilation is common due to pain
- Mortality goes up with:
 - Number of fractures
 - Extremes of age
 - Associated disease

Rib Fractures

Great force is required for sternal fractures.

Ribs 1–3 are well protected by shoulder bones and muscles.

Ribs 4-8 are most frequently fractured.

Ribs 9-12 are relatively mobile and fracture less frequently.

- Ribs 1-3
 - Require great force to fracture
 - Possible underlying lung injury
- Ribs 4-8
 - Least protected
 - Most commonly fractured
- Ribs 9-12
 - Less likely to be fractured
 - Transmit energy of trauma to internal organs
 - If fractured, suspect liver and spleen injury

Sternal Fracture & Dislocation

- Associated with severe blunt anterior trauma
- Area well protected
 - Fractures result from severe impacts
 - Typical mechanism is a direct blow (e.g. steering wheel)
- Low incidence (5-8%)
- Mortality high (25-45%) because of underlying injuries
 - Myocardial contusion
 - Pericardial tamponade
 - Cardiac rupture
 - Pulmonary contusion
- Dislocation uncommon but same MOI as fracture
 - Tracheal depression if posterior

- Segment of the chest that becomes free to move with the pressure changes of respiration
- Three or more adjacent rib fracture in two or more places
- Serious chest wall injury with underlying pulmonary injury
 - Reduces volume of respiration
 - Adds to increased mortality

- Paradoxical flail segment movement
- Chest muscles will initially splint the flail segment
 - Over time muscles will fatigue
 - Flail segment will become more evident
- Positive pressure ventilation can restore tidal volume

 Paradoxical movement of the chest wall seen in a flail segment

Pulmonary Injuries

- Injuries to
 - Lung tissue
 - System that holds lungs to interior of the thoracic cavity
- Injuries:
 - Simple pneumothorax
 - Open pneumothorax
 - Tension pneumothorax
 - Hemothorax
 - Pulmonary contusion

Simple Pneumothorax

- Lung tissue is disrupted and air leaks into the pleural space
- Typical mechanism is a paper bag syndrome
- Progressive Pathology
 - Air accumulates in pleural space
 - Lung collapses
 - Alveoli collapse (atelectasis)
 - Reduced oxygen and carbon dioxide exchange
 - Ventilation/Perfusion Mismatch
 - Increased ventilation but no alveolar perfusion
- Reduced respiratory efficiency results in hypoxia

Simple Pneumothorax

Open Pneumothorax

- Free passage of air between atmosphere and pleural space
- Air replaces lung tissue
- Mediastinum shifts to uninjured side
- Air will be drawn through wound if wound is 2/3 diameter of the trachea or larger
- Signs and symptoms
 - Penetrating chest trauma
 - Sucking chest wound
 - Frothy blood at wound site
 - Severe dyspnea
 - Hypovolemia

Open Pneumothorax

Tension Pneumothorax

- Progression of a spontaneous, simple or open pneumothorax
- Creates a on-way pressure valve within the thorax
- Generates/maintains pressure greater than atmospheric pressure
 - Reduces effectiveness of respiration
 - Air is unable to escape from inside the pleural space
 - Compresses on other structures in the chest

Tension Pneumothorax

Physical findings of a tension pneumothorax

Sign and Symptoms

- Serious and immediate life-threat
- Dyspnea
 - Tachypnea at first
- Progressive ventilation/perfusion mismatch
 - Atelectasis on uninjured side
- Hypoxemia
- Hyperinflation of injured side of chest
- Hyperresonance of injured side of chest

Sign and Symptoms

- Diminished then absent breath sounds on injured side
- Cyanosis
- Diaphoresis
- AMS
- JVD
- Hypotension
- Hypovolemia
- Tracheal shift (late sign)

- Accumulation of blood in the pleural space
 - Serious hemorrhage may accumulate 1,500 mL of blood
 - Each side of thorax may hold up to 3,000 mL
- Mortality rate of 75%
- Blood loss in thorax causes a decrease in tidal volume
 - Ventilation/perfusion mismatch and shock
- Typically accompanies pneumothorax
 - Hemopneumothorax

Health Edu Santé

Physical findings of a hemothorax

Sign and Symptoms

- Blunt or penetrating chest trauma
- Shock
 - Dyspnea
 - Tachycardia
 - Tachypnea
 - Diaphoresis
 - Hypotension (flat jugular veins)
- Dull to percussion over injured side

Pulmonary Contusion

- Soft tissue contusion of the lung
- 30-75% of patients with significant blunt chest trauma
- Frequently associated with rib fracture
- Microhemorrhage
 - May account for 1- 1 ½ L of blood loss in alveolar tissue
- Progressive deterioration of ventilatory status
- Hemoptysis typically present

Sign and Symptoms

- Blunt or penetrating chest trauma
- Increasing dyspnea
- Hypoxia
- Increasing crackles
- Diminishing breath sounds
- Hemoptysis
- Signs and symptoms of shock

Cardiovascular Injuries

- Subset of thoracic trauma that leads to the most fatalities
- Myocardial contusion
- Pericardial tamponade
- Myocardial aneurysm or rupture

Myocardial Contusion

- Occurs in 76% of patient with sever blunt thoracic trauma
- Heart is relatively mobile within the chest
 - Strikes the anterior chest during blunt trauma
 - May be compressed between sternum and thoracic spine
- Right atrium and ventricle is commonly injured
- Injury may reduce strength of cardiac contractions
 - Reduced cardiac output
- Electrical disturbances due to irritability of damaged myocardial cells

Myocardial Contusion

Myocardial Contusion

Progressive Problems

- Hematoma
- Hemoperitoneum
- Myocardial necrosis
- Dysrhythmias
- Heart failure and/or cardiogenic shock

Signs and symptoms

- Blunt injury to the chest
- Bruising of chest wall
- Rapid (irregular) heart rate
- Severe nagging pain unrelieved by rest or oxygen

Pericardial Tamponade

- Restriction to cardiac filling caused by blood or other fluid within the pericardium
- Occurs in <2% of all serious chest trauma
 - Very high mortality
- Results from tear in the coronary artery or penetration of myocardium
 - Blood seeps into pericardium and is unable to escape
 - 200-300 ml of blood can restrict effectiveness of cardiac contractions
 - Removing as little as 20 ml can provide relief

Pericardial Tamponade

Pericardial Tamponade

Physical findings of pericardial tamponade

Signs and Symptoms

- Dyspnea
- Possible cyanosis
- Beck's Triad
 - Distended jugular veins (JVD)
 - Distant heart sounds
 - Decreased arterial pressure
 - Hypotension or narrowing pulse pressure
- Weak, thready pulse
- Shock

Signs and Symptoms

- Kussmaul's sign
 - Decrease or absence of JVD during inspiration
- Pulsus Paradoxus
 - Drop in SBP >10 during inspiration
 - Due to increase in CO2 during inspiration
- Electrical Alterans
 - P, QRS, & T amplitude changes in every other cardiac cycle
- PEA

Myocardial Aneurysm or Rupture

- Occurs almost exclusively with extreme blunt thoracic trauma
- Secondary due to necrosis resulting from MI
- Signs and symptoms
 - Severe rib or sternal fracture
 - Possible signs and symptoms of cardiac tamponade
 - Signs & symptoms of right or left heart failure
 - Absence of vital signs

Myocardial Rupture

Traumatic Aneurysm or Aortic Rupture

- Aorta most commonly injured in severe blunt or penetrating trauma
 - 85-95% mortality
- Typically patients will survive the initial injury insult
 - 30% mortality in 6 hrs.
 - 50% mortality in 24 hrs.
 - 70% mortality in 1 week
- Injury may be confined to areas of aorta attachment
- Signs & Symptoms
 - Rapid and deterioration of vitals
 - Pulse deficit between right and left upper or lower extremities

Other Vascular Injuries

- Rupture or laceration
 - Superior vena cava
 - Inferior vena cava
 - General thoracic vasculature
- Blood localizing in mediastinum
- Compression of:
 - Great vessels
 - Myocardium
 - Esophagus
- General signs and symptoms
 - Penetrating trauma
 - Hypovolemia and shock
 - Hemothorax or hemomediastinum

Diaphragmatic Rupture (Hernia)

- Occurs in high pressure blunt chest trauma and penetrating trauma
- Most common in patients with lower chest injury
- Most often occurs on left side
- Similar to tension presentation as pneumothorax

Signs and Symptoms

- Herniation of abdominal organs into thorax
- Restriction of ipsilateral lung
- Displacement of mediastinum
- Abdomen may appear hollow
- Bowel sounds may be noted in thorax
- Dyspnea, hypotension & JVD

Traumatic Esophageal Rupture

- Rare complication of blunt thoracic trauma
- 30% mortality
- Contents in esophagus/stomach may move into mediastinum
 - Serious Infection occurs
 - Chemical irritation
 - Damage to mediastinal structures
 - Air enters mediastinum
 - Subcutaneous emphysema and penetrating trauma present

Tracheobronchial Injury

- 50% of patients with injury die within 1 hr. of injury
- Disruption can occur anywhere in tracheobronchial tree
- Signs and symptoms
 - Dyspnea
 - Cyanosis
 - Hemoptysis
 - Massive subcutaneous emphysema
 - Suspect/evaluate for other closed chest trauma

Traumatic Asphyxia

- Results from severe compressive forces applied to the thorax
- Causes backwards flow of blood from right side of heart into superior vena cava and the upper extremities
- Signs and symptoms
 - Head and neck become engorged with blood
 - Skin becomes deep red, purple, or blue
 - Not respiratory related
 - JVD
 - Hypotension, hypoxemia, shock
 - Face and tongue swollen
 - Bulging eyes with conjunctival hemorrhage

Traumatic Asphyxia

Thoracic Trauma Assessment: The Deadly Dozen

Immediate Life Threatening "The Lethal six"

- Airway Obstruction
- Tension Pneumothorax
- Pericardial Tamponade
- Open Pneumothorax
- Massive Hemothorax
- Flail Segment

Potentially Life Threatening "The Hidden Six"

- 7. Thoracic Aortic Disruption
- 8. Tracheobronchial Injuries
- 9. Myocardial Contusion
- 10. Diaphragmatic Injuries
- 11. Esophageal Injury
- 12. Pulmonary Contusion

ATTENTIONAlways be Aware

Assessment of Thoracic Trauma

- Scene assessment
- Primary assessment "The Lethal Six"
- Rapid trauma assessment
 - Look Observe exposed chest
 - JVD, obvious injuries, expansion of chest
 - Listen Auscultate chest
 - Bilateral and equal air entry
 - Feel Palpate chest
 - Pain/tenderness, subcutaneous emphysema, stability
- Ongoing assessment "The Hidden Six"

 With pulse oximetry, you can continuously monitor the percentage of the patient's

oxygen saturation

 Carefully palpate the thorax of a patient with a suspected injury to the region

 Placing your hands on the lower thorax, you can feel for rise and fall of the chest during respiration

- Auscultate frequently
- Auscultate all lung lobes, both anteriorly and posteriorly (if possible)

General Management

- Ensure ABC's
 - High flow O₂ via NRB
 - Intubate if indicated
 - Consider ALS back up
 - Consider overdrive ventilation
 - If minute volume less than 6,000 mL
 - BVM at a rate of 12-16
 - May be beneficial for chest contusion and rib fractures
 - Promotes oxygen perfusion of alveoli and prevents atelectasis

General Management

- Anticipate myocardial compromise
- Shock management
- Serial auscultation
- Specific procedures

Interventions

PCP

- Full spinal immobilization
- Open airway
- Control significant bleeding
- Apply occlusive dressing
- Stabilize flail segments
- Administer IV fluids
- Administer analgesics
- Call for ACP
- Rapid Transport

ACP

- Endotracheal Intubation
- Chest needle decompression
- Administer TXA
- Administer controlled drug analgesics

- Rib fractures
 - Supportive O₂ therapy
 - Consider analgesics for pain and to improve chest excursion
- Sternoclavicular Dislocation
 - Supportive O₂ therapy
 - Evaluate for concomitant injury

Flail Chest

- Place patient on side of injury
 - Only if spinal injury is not suspected
- Expose injury site
- Dress with bulky bandage against flail segment
 - Gentle splinting
 - Stabilizes fracture site
 - Sandbags are contraindicated
- High flow O₂
- Consider PPV or ET if decreasing respiratory status

 Flail Chest should be treated with administration of oxygen and gentle splinting of the flail segment with a pillow or a pad

Management

Open Pneumothorax

- High flow O₂
- Cover site with sterile occlusive dressing taped on three sides
- Progressive airway management if

indicated

On inspiration, dressing seals wound, preventing air entry

Expiration allows trapped air to escape through untaped section of dressing

Tension Pneumothorax

- Confirmation
 - Auscultation and physical signs
- Oxygen therapy
 - Consider overdrive ventilations/intubation
- Pleural Decompression (ACP/CCP Only)
 - 2nd intercostal space in mid-clavicular line
 - Top of the third rib
 - Consider multiple decompression sites if patient remains symptomatic
 - Large over the needle catheter: 14 ga
 - Create a one-way-valve: Glove tip or Heimlich valve

Needle Decompression

Lung Reinflation

- Hemothorax
 - Supportive O₂ therapy
 - Fluid resuscitation
 - Evaluate breath sounds for fluid overload
- Myocardial Contusion
 - Monitor ECG
 - Alert for dysrhythmias
 - IV if antidysrhythmics are needed

- Pericardial Tamponade
 - Supportive O₂ therapy
 - IV therapy
 - Consider pericardiocentesis if within scope/skill
- Aortic Aneurysm
 - Avoid jarring or rough handling
 - Initiate IV therapy enroute
 - Mild hypotension may be protective
 - Rapid fluid bolus if aneurysm ruptures
 - Keep patient calm

Health Edu Santé

Management

- Tracheobronchial Injury
 - Airway management/consider intubation
 - Supportive O₂ therapy
 - Observe for development of tension pneumothorax and SQ emphysema
- Traumatic Asphyxia
 - Support airway
 - Supportive O₂ therapy, consider PPV with BVM
 - 2 large bore IV's
 - Evaluate and treat for concomitant injuries
 - Consider Sodium Bicarbonate for patients trapped (ACP/CCP Only)

Documentation

- Key Points
 - Scene findings
 - Mechanism of injury
 - Time of injury
 - Initial patient presentation
 - Complete physical exam inc. pertinent negatives
 - Treatment provided
 - Reassessment findings

- Pathophysiology
- Assessment
- Management
- Documentation